|
|
|
Temperature-dependent magnetotransport properties of CoFe2O4/Pt heterostructure |
| Haomang He(何浩茫), Ruijie Xu(徐睿劼), Anke Song(宋安柯), Zhongqiang Chen(陈中强), and Xuefeng Wang(王学锋)† |
| State Key Laboratory of Spintronics, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China |
|
|
|
|
Abstract We report on the growth of CoFe2O4/Pt heterostructure and their magnetotransport properties. The magnetoresistance under high magnetic fields exhibits a sign change when the temperature increases from 5 K to 10 K. The anomalous Hall resistance decreases as the temperature increases. Furthermore, angle-dependent magnetoresistance indicates that the observed magnetotransport behaviors originate from the competition between the spin Hall magnetoresistance and magnetic proximity effect.
|
Received: 01 September 2025
Revised: 11 October 2025
Accepted manuscript online: 28 October 2025
|
|
PACS:
|
75.30.Ds
|
(Spin waves)
|
| |
76.50.+g
|
(Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)
|
| |
31.15.aq
|
(Strongly correlated electron systems: generalized tight-binding method)
|
|
| Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 62525406, T2394473, 624B2070, and 62274085), the National Key Research and Development Program of China (Grant No. 2022YFA1402404), and the Innovation Program for Quantum Science and Technology of China (Grant No. 2024ZD0301300). |
Corresponding Authors:
Xuefeng Wang
E-mail: xfwang@nju.edu.cn
|
Cite this article:
Haomang He(何浩茫), Ruijie Xu(徐睿劼), Anke Song(宋安柯), Zhongqiang Chen(陈中强), and Xuefeng Wang(王学锋) Temperature-dependent magnetotransport properties of CoFe2O4/Pt heterostructure 2026 Chin. Phys. B 35 017502
|
[1] Adachi H, Uchida K, Saitoh E and Maekawa S 2013 Rep. Prog. Phys. 76 036501 [2] Manchon A, Zelezny J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garello K and Gambardella P 2019 Rev. Mod. Phys. 91 035004 [3] Ando K, Takahashi S, Ieda J, Kajiwara Y, Nakayama H, Yoshino T, Harii K, Fujikawa Y, Matsuo M, Maekawa S and Saitoh E 2011 J. Appl. Phys. 109 103913 [4] Vaz D C, Barthel emy A and Bibes M 2018 Jpn. J. Appl. Phys. 57 0902A4 [5] Ando K, Takahashi S, Harii K, Sasage K, Ieda J, Maekawa S and Saitoh E 2008 Phys. Rev. Lett. 101 036601 [6] Kimura T, Otani Y, Sato T, Takahashi S and Maekawa S 2007 Phys. Rev. Lett. 98 156601 [7] Valenzuela S O and Tinkham M 2006 Nature 442 176 [8] Hahn C, de Loubens G, Klein O, Viret M, Naletov V V and Ben Youssef J 2013 Phys. Rev. B 87 174417 [9] Vlietstra N, Shan J, Castel V, Ben Youssef J, Bauer G E W and van Wees B J 2013 Appl. Phys. Lett. 103 032401 [10] Vlietstra N, Shan J, Castel V, van Wees B J and Ben Youssef J 2013 Phys. Rev. B 87 184421 [11] Velez S, Bedoya-Pinto A, Yan W J, Hueso L E and Casanova F 2016 Phys. Rev. B 94 174405 [12] Chen Y T, Takahashi S, Nakayama H, Althammer M, Goennenwein S T B, Saitoh E and Bauer G E W 2013 Phys. Rev. B 87 144411 [13] Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprags S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B and Saitoh E 2013 Phys. Rev. Lett. 110 206601 [14] Avci C O, Quindeau A, Pai C F, Mann M, Caretta L, Tang A S, Onbasli M C, Ross C A and Beach G S D 2017 Nat. Mater. 16 309 [15] Wu H, Huang L, Fang C, Yang B S, Wan C H, Yu G Q, Feng J F, Wei H X and Han X F 2018 Phys. Rev. Lett. 120 097205 [16] Yanagihara H, Uwabo K, Minagawa M, Kita E and Hirota N 2011 J. Appl. Phys. 109 07C122 [17] Li Z L, Lyu Y, Ran Z, Wang Y J, Zhang Y, Lu N P, Wang M, Sassi M, Ha T D, N’Diaye A T, Shafer P, Pearce C, Rosso K, Arenholz E, Juang J Y, He Q, Chu Y H, Luo W D and Yu P 2023 Adv. Funct. Mater. 33 2212298 [18] Moitra D, Hazra S, Ghosh B K, Jani R K, Patra M K, Vadera S R and Ghosh N N 2015 RSC Adv. 5 51130 [19] Khan I and Hong J 2024 J. Mater. Chem. C 12 17658 [20] Isasa M, Velez S, Sagasta E, Bedoya-Pinto A, Dix N, S anchez F, Hueso L E, Fontcuberta J and Casanova F 2016 Phys. Rev. Appl. 6 034007 [21] Slonczewski J C 1958 Phys. Rev. 110 1341 [22] Suzuki Y, vanDover R B, Gyorgy E M, Phillips J M, Korenivski V, Werder D J, Chen C H, Cava R J, Krajewski J J, Peck W F and Do K B 1996 Appl. Phys. Lett. 68 714 [23] Isasa M, Bedoya-Pinto A, Velez S, Golmar F, S anchez F, Hueso L E, Fontcuberta J and Casanova F 2014 Appl. Phys. Lett. 105 142402 [24] Tainosho T, Niizeki T, Inoue J, Sharmin S, Kita E and Yanagihara H 2017 AIP Adv. 7 055936 [25] Collet M, Mattana R, Moussy J B, Ollefs K, Collin S, Deranlot C, Anane A, Cros V, Petroff F, Wilhelm F and Rogalev A 2017 Appl. Phys. Lett. 111 202401 [26] Vasili H B, Gamino M, Gazquez J, Sanchez F, Valvidares M, Gargiani P, Pellegrin E and Fontcuberta J 2018 ACS Appl. Mater. Interfaces 10 12031 [27] Amamou W, Pinchuk I V, Trout A H, Williams R E A, Antolin N, Goad A, O’Hara D J, Ahmed A S, Windl W, McComb D W and Kawakami R K 2018 Phys. Rev. Mater. 2 011401 [28] Peddis D, Cannas C, Piccaluga G, Agostinelli E and Fiorani D 2010 Nanotechnology 21 125705 [29] Kim D H, Lee H J, Kim G, Koo Y S, Jung J H, Shin H J, Kim J Y and Kang J S 2009 Phys. Rev. B 79 033402 [30] Kotani A 2008 Phys. Rev. B 78 195115 [31] Chen J G 1997 Surf. Sci. Rep. 30 1 [32] Chen C T, Idzerda Y U, Lin H J, Smith N V, Meigs G, Chaban E, Ho G H, Pellegrin E and Sette F 1995 Phys. Rev. Lett. 75 152 [33] Wu R Q and Freeman A J 1994 Phys. Rev. Lett. 73 1994 [34] Guo G Y, Ebert H, Temmerman W M and Durham P J 1994 Phys. Rev. B 50 3861 [35] Wu H, Zhang Q, Wan C, Ali S S, Yuan Z, You L, Wang J, Choi Y S and Han X 2015 IEEE Trans. Magn. 51 4100104 [36] Guo J Q, Meng K K, Zhang T Z, Liu J J, Chen J K, Wu Y, Xu X G and Jiang Y 2022 Appl. Phys. Lett. 121 142403 [37] Xia T R, Yang X T, Zhang Y F, Liu X Q, Cai X Y, Liu C, Yao Q, Kou X F and Wang W B 2024 Chin. Phys. B 33 087504 [38] Ding S L, Liang Z Y, Yun C, Wu R, Xue M Z, Lin Z C, Ross A, Becker S, Yang W Y, Ma X B, Chen D F, Sun K, Jakob G, Klaui M and Yang J B 2021 Phys. Rev. B 104 224410 [39] Shao Q M, Grutter A, Liu Y W, Yu G Q, Yang C Y, Gilbert D A, Arenholz E, Shafer P, Che X Y, Tang C, Aldosary M, Navabi A, He Q L, Kirby B J, Shi J and Wang K L 2019 Phys. Rev. B 99 104401 [40] Jin Q, Yang M, Song G Z, Zhao N, Chen S R, Hong H T, Cui T, Rong D K, Wang Q Y, Fan Y Y, Ge C, Wang C, Bi J C, Cao Y W, Wu L S, Wang S M, Jin K J, Cheng Z G and Guo E J 2024 Chin. Phys. Lett. 41 027402 [41] Bai Y, Wang Z, Lei N, Muhammad W, Xiang L F, Li Q, Lai H L, Zhu Y Y, Wang W B, Guo H W, Yin L F, Wu R Q and Shen J 2022 Chin. Phys. Lett. 39 108501 [42] Dong X J and Zhang C W 2024 Chin. Phys. B 33 077303 [43] Althammer M, Meyer S, Nakayama H, et al. 2013 Phys. Rev. B 87 224401 [44] Liang X, Zhu Y P, Peng B, Deng L J, Xie J L, Lu H P, Wu M Z and Bi L 2016 ACS Appl. Mater. Interfaces 8 8175 [45] Hahn C, de Loubens G, Klein O, Viret M, Naletov V V and Ben Youssef J 2013 Phys. Rev. B 87 174417 [46] Sagasta E, Omori Y, Isasa M, Gradhand M, Hueso L E, Niimi Y, Otani Y and Casanova F 2016 Phys. Rev. B 94 060412 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|