Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097307    DOI: 10.1088/1674-1056/add246
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Extremely large magnetoresistance in single-crystalline ZrBi2

Cundong Li(李存东)1,2,†, Binbin Ruan(阮彬彬)3,†, Qingxin Dong(董庆新)1,2, Jianli Bai(白建利)1,2, Libo Zhang(张黎博)1,2, Qiaoyu Liu(刘乔宇)1,2, Jingwen Cheng(程靖雯)1,2, Pinyu Liu(刘品宇)1,2, Yu Huang(黄宇)1,2, Yingrui Sun(孙英睿)1,2, Zhian Ren(任治安)1,2, and Genfu Chen(陈根富)1,2,4,‡
1 Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China;
4 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Magnetoresistance (MR) is a pivotal transport phenomenon within the realm of condensed matter physics. In recent years, materials exhibiting extremely large unsaturated magnetoresistance (XMR), which are often potential topological materials, have garnered significant attention. In this study, we synthesized single crystals of ZrBi$_{2}$ and performed electrical and specific heat measurements on them. The resistivity of ZrBi$_{2}$ displays metallic behavior with a high residual resistance ratio. Notably, the MR of ZrBi$_{2}$ reaches approximately $2.0 \times 10^{3}$% at 2 K and 16 T without saturation. Weak Shubnikov-de Haas oscillations with two frequencies were observed above 13.5 T, which correspond to 237 T and 663 T. Hall effect fitting yields nearly equal concentrations of electron and hole carriers with concentrations of approximately 10$^{21}$ cm$^{-3}$ and mobilities of approximately 5000 cm$^{2}\cdot $V$^{-1}\cdot $s$^{-1}$ at 2 K. The XMR could be attributed to the electron-hole compensation with high mobility.
Keywords:  extremely large magnetoresistance      SdH oscillation      electron-hole compensation  
Received:  10 March 2025      Revised:  28 April 2025      Accepted manuscript online:  30 April 2025
PACS:  73.43.Qt (Magnetoresistance)  
  71.70.Di (Landau levels)  
  72.15.-v (Electronic conduction in metals and alloys)  
  72.80.Ga (Transition-metal compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12274440), the National Key R&D Program of China (Grant No. 2022YFA1403903), and the Synergetic Extreme Condition User Facility (SECUF).
Corresponding Authors:  Genfu Chen     E-mail:  gfchen@iphy.ac.cn

Cite this article: 

Cundong Li(李存东), Binbin Ruan(阮彬彬), Qingxin Dong(董庆新), Jianli Bai(白建利), Libo Zhang(张黎博), Qiaoyu Liu(刘乔宇), Jingwen Cheng(程靖雯), Pinyu Liu(刘品宇), Yu Huang(黄宇), Yingrui Sun(孙英睿), Zhian Ren(任治安), and Genfu Chen(陈根富) Extremely large magnetoresistance in single-crystalline ZrBi2 2025 Chin. Phys. B 34 097307

[1] Niu R and Zhu W K 2021 J. Phys. Condens. Matter 34 113001
[2] Kumar N, Sun Y, Xu N, Wang P, Zhang D, Ding W, Liu K, Law K T, Zeng Y J, Shen B and Yan B 2017 Nat. Commun. 8 1642
[3] Huang X, Zhao L, Long Y, Wang P, Chen D, Yang Z, Liang H, Xue M, Weng H, Fang Z, Dai X and Chen G 2015 Phys. Rev. X 5 031023
[4] Luo Y, Ghimire N J, Wartenbe M, Choi H, Neupane M, McDonald R D, Zhu J, Bauer E D, Ronning F and Thompson J D 2015 Phys. Rev. B 92 205134
[5] Kumar N, Shekhar C, Wu S C, Le C, Schmidt H, Borrmann H, Yan B, Parkin S S P, Felser C and Yan B 2016 Phys. Rev. B 93 241106
[6] Qian B, Tang F, Ruan Y R,Wu D, Chen J, Zhou L, Gao Y, Chen X, Liu J and Guo Y 2018 J. Mater. Chem. C 6 10020
[7] Lv Y Y, Li X, Pang B, Lin S, Luo X, Chen G, Luo J, Han F, ZhuWand Wang W 2017 J. Appl. Phys. 122 045102
[8] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205
[9] Wang Y, Wang L, Liu X, Zhang H, Wang H, Zhao L, Li X, Dai X, Liu X, Chen G and Wang N 2019 Nano Lett. 19 3969
[10] Mangelsen S, Naumov P G, Barkalov O I, Palasyuk T, Medvedev S A, Schwarz U, Hanfland M, Tsirlin A A and Grin Y 2017 Phys. Rev. B 96 205148
[11] Zheng W, Schönemann R, Aryal N, Zhou Q, Rhodes D, Chikara S, Balicas L, Siegrist T and Manousakis E 2018 Phys. Rev. B 97 235154
[12] Pavlosiuk O and Kaczorowski D 2018 Sci. Rep. 8 11297
[13] Wang Y, Zhang J, Zhu W, Zhang Y, Weng H, Zhang W, Yang L, Liu Z, Feng S, Zhao X, Li X, Dai X, Fang Z and Chen G 2016 Sci. Rep. 6 31554
[14] Shao Y, Sun Z, Wang Y, Li D, Pi L, Lu X, Zhao Y, Zhang W, Chen Y, Zhou S and Zhang Y 2018 Proc. Natl. Acad. Sci. USA 116 1168
[15] Wang K, Graf D, Li L, Wang L and Petrovic C 2014 Sci. Rep. 4 7328
[16] Li Y, Li L, Wang J, Li T, Chen G, Luo J, Han F, Zhu W and Wang W 2016 Phys. Rev. B 94 121115
[17] Leahy I A, Lin Y P, Siegfried P E, Graf D, Tien H J and Lee Y S 2018 Proc. Natl. Acad. Sci. USA 115 10570
[18] Bannies J, Razzoli E, Michiardi M, Boschini F, Zwartsenberg B, Day R P, Elfimov I S, Damascelli A, Denlinger J D, Yang L X, Sobota J A, Rotenberg E, Frandsen B A, Cheung S C, Birgeneau R J and Elfimov I 2021 Phys. Rev. B 103 155144
[19] Hulliger F 1964 Nature 204 775
[20] Okawa K, Kanou M, Namiki H, Ishii H, Murakawa H, Hanaguri T and Sasagawa T 2018 Phys. Rev. Mater. 2 124201
[21] Gao W, Hao N, Zheng F W, Ma X, Zhou P, Zhang Y, Lu P, Zhang J, Yang J, Singh D J, Zhang L and Wang L 2017 Phys. Rev. Lett. 118 256601
[22] Sobczak Z, Winiarski M J, Kolincio K, Klimczuk T and Kaczorowski D 2017 Cryst. Growth Des. 17 6016
[23] Han T 2017 The Transport Study of Strong Spin Orbit Coupling Material of Sr2IrO4 and ZrBi2 (University of Science and Technology of China)
[24] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys. Condens. Matter 21 395502
[25] Giannozzi P, Andreussi O, Brumme T, et al. 2017 J. Phys. Condens. Matter 29 465901
[26] Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X and Burke K 2008 Phys. Rev. Lett. 100 136406
[27] M Z J 2001 Electrons and Phonons: The theory of transport phenomena in solids (New York: Oxford University Press)
[28] Gong J X, Yang J, Ge M, Liu Y, Luo X, Chen G, Luo J, Han F, Zhu W and Wang W 2018 Chin. Phys. Lett. 35 097101
[29] Xu C, Li B, Jiao W, Zhou W, Qian B, Sankar R, Chou F C, Lin H, Liu Z, Chen Y and Wang N 2018 Chem. Mater. 30 4823
[30] Niu Q, Yu W C, Aulestia E I P, Cheung S K Y, Wong C H, Yang S A and Lin H 2019 Phys. Rev. B 99 125126
[31] Murakawa H, BahramyMS, Tokunaga M, Kohmoto Y, Nagaosa N and Tokura Y 2013 Science 342 1490
[32] Nie L, Luo G and Koh H 2002 Physica C 371 259
[33] Kohler M 1938 Ann. Phys. 424 211
[34] Xu J, Han F, Wang T T, Wang X, Liu Y, Chen G, Luo J, Zhu W and Wang W 2021 Phys. Rev. X 11 041029
[35] Zhao L, Xu Q, Wang X, Xia B, Dai X, Chen G, Luo J, Han F, Zhu W and Wang W 2017 Phys. Rev. B 95 115119
[36] Xia B, Ren P, Sulaev A, Liu P, Shen S Q and Wang L 2013 Phys. Rev. B 87 085442
[1] In-plane negative magnetoresistance and quantum oscillations in van der Waals antiferromagnet DyTe3
Qi Qi(齐琦), Senhao Lv(吕森浩), Ke Zhu(祝轲), Yaofeng Xie(谢耀锋), Guojing Hu(胡国静), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Yang Yang(杨洋), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(7): 077305.
No Suggested Reading articles found!