|
|
|
In-plane negative magnetoresistance and quantum oscillations in van der Waals antiferromagnet DyTe3 |
| Qi Qi(齐琦)1,2,†, Senhao Lv(吕森浩)1,†, Ke Zhu(祝轲)1,2, Yaofeng Xie(谢耀锋)1,2, Guojing Hu(胡国静)1, Zhen Zhao(赵振)1, Guoyu Xian(冼国裕)3, Yechao Han(韩烨超)2, Yang Yang(杨洋)1,2, Lihong Bao(鲍丽宏)1,2, Xiao Lin(林晓)2, Hui Guo(郭辉)1,2,‡, Haitao Yang(杨海涛)1,2,§, and Hong-Jun Gao(高鸿钧)1,2 |
1 Beijing National Center for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Songshan Lake Materials Laboratory, Dongguan 523808, China |
|
|
|
|
Abstract Two-dimensional van der Waals (vdW) magnetic materials, characterized by their tunable magnetism, spin transport properties, and remarkable quantum effects, provide significant promise for the development of efficient, low-power spintronic devices. Intriguingly, the rare earth tritelluride ($R$Te$_3$) materials have attracted great attention due to their unique magnetic structure, exotic electronic properties, multiple charge density wave (CDW), and superconductivity under pressure. Here, we report the successful synthesis of high-quality DyTe$_{3}$ single crystals using a self-flux method. DyTe$_{3}$ shows an antiferromagnetic transition at 4.5 K and demonstrates the magnetic field-induced ferromagnetism. The high-quality DyTe$_{3}$ single crystal demonstrates outstanding transport properties, featuring a high carrier mobility of approximately 1.4$\times10^{4}$ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$ and large linear magnetoresistance of 1300%. Furthermore, distinct Shubnikov-de Haas (SdH) oscillations are observed in DyTe$_{3}$, revealing a small Fermi pocket and an effective mass of 0.24 $m_{\rm e}$. Remarkably, the unconventional in-plane negative magnetoresistances appear along the $a$-axis below 2 T and $c$-axis until 9 T from 2 K to 17 K, which are attributed to the complex helimagnetic structures caused by CDW coupling and weak single-ion anisotropy. Our findings offer a significant platform for understanding the complex magnetoresistance behavior and quantum transport effects in $R$Te$_{3}$-type materials, holding great promise for advancing applications in electronic and spintronic devices.
|
Received: 08 February 2025
Revised: 06 March 2025
Accepted manuscript online: 15 April 2025
|
|
PACS:
|
73.43.Qt
|
(Magnetoresistance)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62488201 and 1240041502), the Ministry of Science and Technology of China (Grant No. 2022YFA1204100), the Chinese Academy of Sciences (Grant No. XDB33030100), and the Innovation Program of Quantum Science and Technology (Grant No. 2021ZD0302700). |
Corresponding Authors:
Hui Guo, Haitao Yang
E-mail: guohui@iphy.ac.cn;htyang@iphy.ac.cn
|
Cite this article:
Qi Qi(齐琦), Senhao Lv(吕森浩), Ke Zhu(祝轲), Yaofeng Xie(谢耀锋), Guojing Hu(胡国静), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Yang Yang(杨洋), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧) In-plane negative magnetoresistance and quantum oscillations in van der Waals antiferromagnet DyTe3 2025 Chin. Phys. B 34 077305
|
[1] Ali M N, Xiong J, Flynn S, Tao J, Gibson Q D, Schoop L M, Liang T, Haldolaarachchige N, Hirschberger M, Ong N P and Cava R J 2014 Nature 514 205 [2] Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H and Zhang Y 2018 Nature 563 94 [3] Kim K S, Lee D, Chang C S, Seo S, Hu Y, Cha S, Kim H, Shin J, Lee J H, Lee S, Kim J S, Kim K H, Suh J M, Meng Y, Park B I, Lee J H, Park H S, Kum H S, Jo M H, Yeom G Y, Cho K, Park J H, Bae S H and Kim J 2023 Nature 614 88 [4] Brouet V, Yang W L, Zhou X J, Hussain Z, Moore R G, He R, Lu D H, Shen Z X, Laverock J, Dugdale S B, Ru N and Fisher I R 2008 Phys. Rev. B 77 235104 [5] Lee C H, Silva E C, Calderin L, Nguyen M A T, Hollander M J, Bersch B, Mallouk T E and Robinson J A 2015 Sci. Rep. 5 10013 [6] Liu L, Li T, Ma L, Li W, Gao S, Sun W, Dong R, Zou X, Fan D, Shao L, Gu C, Dai N, Yu Z, Chen X, Tu X, Nie Y, Wang P, Wang J, Shi Y and Wang X 2022 Nature 605 69 [7] Li L, Wang Q, Wu F, Xu Q, Tian J, Huang Z, Wang Q, Zhao X, Zhang Q, Fan Q, Li X, Peng Y, Zhang Y, Ji K, Zhi A, Sun H, Zhu M, Zhu J, Lu N, Lu Y, Wang S, Bai X, Xu Y, Yang W, Li N, Shi D, Xian L, Liu K, Du L and Zhang G 2024 Nat. Commun. 15 1825 [8] Wang L, Xu X, Zhang L, Qiao R, Wu M, Wang Z, Zhang S, Liang J, Zhang Z, Zhang Z, Chen W, Xie X, Zong J, Shan Y, Guo Y, Willinger M, Wu H, Li Q, Wang W, Gao P, Wu S, Zhang Y, Jiang Y, Yu D, Wang E, Bai X, Wang Z J, Ding F and Liu K 2019 Nature 570 91 [9] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J and Mak K F 2016 Nat. Phys. 12 139 [10] Li H, Ruan S and Zeng Y 2019 Adv. Mater. 31 1900065 [11] Wang Z, Gibertini M, Dumcenco D, Taniguchi T, Watanabe K, Giannini E and Morpurgo A F 2019 Nat. Nanotechnol. 14 1116 [12] Ghazaryan D, Greenaway M T, Wang Z, Guarochico-Moreira V H, Vera-Marun I J, Yin J, Liao Y, Morozov S V, Kristanovski O, Lichtenstein A I, Katsnelson M I, Withers F, Mishchenko A, Eaves L, Geim A K, Novoselov K S and Misra A 2018 Nat. Electron. 1 344 [13] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270 [14] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, BaoW,Wang C,Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265 [15] Zhang G, Guo F, Wu H, Wen X, Yang L, Jin W, Zhang W and Chang H 2022 Nat. Commun. 13 5067 [16] Lee J U, Lee S, Ryoo J H, Kang S, Kim T Y, Kim P, Park C H, Park J G and Cheong H 2016 Nano Lett. 16 7433 [17] Li Q, Zhen W, Wang N, Shi M, Yu Y, Pan S, Deng L, Cai J, Wang K, Zou L, Zeng Z and Zhang J 2024 Chin. Phys. Lett. 41 107503 [18] Tian Y, Gao W, Henriksen E A, Chelikowsky J R and Yang L 2019 Nano Lett. 19 7673 [19] Lei S, Lin J, Jia Y, Gray M, Topp A, Farahi G, Klemenz S, Gao T, Rodolakis F, McChesney J L, Ast C R, Yazdani A, Burch K S, Wu S, Ong N P and Schoop L M 2020 Sci. Adv. 6 eaay6407 [20] Akatsuka S, Esser S, Okumura S, Yambe R, Yamada R, Hirschmann M M, Aji S, White J S, Gao S, Onuki Y, Arima T, Nakajima T and Hirschberger M 2024 Nat. Commun. 15 4291 [21] Iyeiri Y, Okumura T, Michioka C and Suzuki K 2003 Phys. Rev. B 67 144417 [22] Ru N, Condron C L, Margulis G Y, Shin K Y, Laverock J, Dugdale S B, Toney M F and Fisher I R 2008 Phys. Rev. B 77 035114 [23] Straquadine J A W, Ikeda M S and Fisher I R 2022 Phys. Rev. X 12 021046 [24] Zocco D A, Hamlin J J, Grube K, Chu J H, Kuo H H, Fisher I R and Maple M B 2015 Phys. Rev. B 91 205114 [25] Iguchi Y, Straquadine J A, Murthy C, Kivelson S A, Singh A G, Fisher I R and Moler K A 2024 Phys. Rev. Lett. 133 036001 [26] Liu J S, Huan S C, Liu Z H, Liu W L, Liu Z T, Lu X L, Huang Z, Jiang Z C,Wang X, Yu N, Zou Z Q, Guo Y F and Shen D W 2020 Phys. Rev. Mater. 4 114005 [27] Pariari A, Koley S, Roy S, Singha R, Laad M S, Taraphder A and Mandal P 2021 Phys. Rev. B 104 155147 [28] Yumigeta K, Attarde Y, Kopaczek J, Sayyad M Y, Shen Y, Blei M, Rajaei Moosavy S T, Qin Y, Sailus R and Tongay S 2022 APL Mater. 10 111112 [29] Lavagnini M, Eiter H M, Tassini L, Muschler B, Hackl R, Monnier R, Chu J H, Fisher I R and Degiorgi L 2010 Phys. Rev. B 81 081101 [30] Yusupov R V, Mertelj T, Chu J H, Fisher I R and Mihailovic D 2008 Phys. Rev. Lett. 101 246402 [31] Xing Y, Li Y, Yang Z,Wang Z, Yang P, Ge J, Liu Y, Liu Y, Luo T, Tang Y and Wang J 2020 J. Appl. Phys. 128 073901 [32] Ci H, Chen J, Ma H, Sun X, Jiang X, Liu K, Shan J, Lian X, Jiang B, Liu R, Liu B, Yang G, Yin W, Zhao W, Huang L, Gao T, Sun J and Liu Z 2022 Adv. Mater. 34 2206389 [33] He J, He D, Wang Y, Cui Q, Bellus M Z, Chiu H Y and Zhao H 2015 ACS Nano 9 6436 [34] Abrikosov A A 1998 Phys. Rev. B 58 2788 [35] Abrikosov A A 2000 Europhys. Lett. EPL 49 789 [36] Parish M M and Littlewood P B 2003 Nature 426 162 [37] Zhang S, Wang Y, Zeng Q, Shen J, Zheng X, Yang J, Wang Z, Xi C, Wang B, Zhou M, Huang R,Wei H, Yao Y,Wang S, Parkin S S P, Felser C, Liu E and Shen B 2022 Proc. Natl. Acad. Sci. USA 119 e2208505119 [38] Sinchenko A A, Grigoriev P D, Lejay P and Monceau P 2017 Phys. Rev. B 96 245129 [39] Wan Y M, Cheng E J, Ma H Y, Yang X F, Hou X F, Chen X J, Zhang X, Xi C Y, Zhong Z C, Liu J P, Guo Y F and Li S Y 2023 Phys. Rev. B 108 205132 [40] Walmsley P, Aeschlimann S, Straquadine J A W, Giraldo-Gallo P, Riggs S C, Chan M K, McDonald R D and Fisher I R 2020 Phys. Rev. B 102 045150 [41] Dalgaard K J, Lei S,Wiedmann S, BremholmMand Schoop L M 2020 Phys. Rev. B 102 245109 [42] Li L, Ye G J, Tran V, Fei R, Chen G, Wang H, Wang J, Watanabe K, Taniguchi T, Yang L, Chen X H and Zhang Y 2015 Nat. Nanotechnol. 10 608 [43] Zhang L, Pan D, Chen Y, Zhao J and Xu H 2022 Chin. Phys. B 31 098507 [44] Liang T, Gibson Q, Ali M N, Liu M, Cava R J and Ong N P 2015 Nat. Mater. 14 280 [45] Ding L, Koo J, Yi C, Xu L, Zuo H, Yang M, Shi Y, Yan B, Behnia K and Zhu Z 2021 J. Phys. Appl. Phys. 54 454003 [46] Yi Z K, Liu Q, Guang S K, Xu S, Yue X Y, Liang H, Li N, Zhou Y, Wu D D, Sun Y, Li Q J, Cheng P, Xia T L, Sun X F and Wang Y Y 2024 Chin. Phys. B 33 047501 [47] Son D T and Spivak B Z 2013 Phys. Rev. B 88 104412 [48] Karki Chhetri S, Acharya G, Graf D, Basnet R, Rahman S, Sharma M M, Upreti D, Nabi M R U, Kryvyi S, Sakon J, Mortazavi M, Da B, Churchill H and Hu J 2025 Phys. Rev. B 111 014431 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|