Please wait a minute...
Chin. Phys. B, 2026, Vol. 35(1): 017401    DOI: 10.1088/1674-1056/ae1df1
RAPID COMMUNICATION Prev  

Doping dependence of resistivity, upper critical field and its anisotropy in overdoped Ba1-xKxFe2As2 (x = 0.6-1) single crystals

Ke Shi(史可)1,2, Wenshan Hong(洪文山)3, Yang Li(李阳)3,4, Minjie Zhang(张敏杰)1,2, Yongqi Han(韩永琦)1,2, Yu Zhao(赵宇)1,2, Jiating Wu(吴嘉挺)1,5, Ze Wang(王泽)1, Langsheng Ling(凌浪生)1, Chuanying Xi(郗传英)1, Li Pi(皮雳)1, Huiqian Luo(罗会仟)3,†, and Zhaosheng Wang(王钊胜)1,‡
1 Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, China;
2 University of Science and Technology of China, Hefei 230026, China;
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
5 Electronic and Mechanical Engineering, Fujian Polytechnic Normal University, Fuzhou 350300, China
Abstract  Temperature-dependent resistivity, upper critical field $H_{\rm c2}$ and its anisotropy in overdoped superconducting Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_2$ ($x=0.6$-1) single crystals have been measured in steady magnetic fields up to 44 T and low temperatures down to 0.4 K. Analysis using both the quadratic term and power-law fitting demonstrates that the in-plane resistivity $\rho_{ab}(T)$ progressively approaches the Fermi-liquid $T^2$ behavior with increasing K doping and reaches a saturation plateau at $x \approx 0.8$. The temperature dependence of both $H^{ab}_{\rm{c2}}$ and $H^{c}_{\rm{c2}}$ follows the Werthamer-Helfand-Hohenberg model, incorporating orbital and spin paramagnetic effects. For $x \leq 0.8$, the orbital effect dominates for $H \parallel ab$, while the Pauli paramagnetic effect prevails for $H\parallel c$. For $x > 0.8$, the Pauli paramagnetic effect becomes dominant in both crystallographic directions. The anisotropy of $H_{\rm{c2}}(0)$ exhibits a discontinuity in its dependence on K doping concentration with a significant enhancement at $x=0.8$ and a maximum at $x=0.9$. These experimental results indicate that the electron correlation effect is enhanced in the heavily overdoped Ba$_{1-x}$K$_{x}$Fe$_{2}$As$_2$ system where the underlying symmetries are broken due to the Fermi surface reconstruction before $x=0.9$.
Keywords:  BaK122 single crystals      high magnetic fields      upper critical field Hc2      magnetoresistance  
Received:  11 October 2025      Revised:  07 November 2025      Accepted manuscript online:  11 November 2025
PACS:  74.25.Op (Mixed states, critical fields, and surface sheaths)  
  74.25.F- (Transport properties)  
  74.70.Xa (Pnictides and chalcogenides)  
  74.25.Dw (Superconductivity phase diagrams)  
Fund: This work was supported by the National Key Research and Development Program of China (Grant Nos. 2024YFA1611100, 2023YFA1406100, and 2018YFA0704201), the Systematic Fundamental Research Program Leveraging Major Scientific and Technological Infrastructure, Chinese Academy of Sciences (Grant No. JZHKYPT-2021–08), the National Natural Science Foundation of China (Grant Nos. 11704385, 11874359, and 12274444), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB25000000), and Steady High Magnetic Field Facility Instrument and Equipment Renovation.
Corresponding Authors:  Huiqian Luo, Zhaosheng Wang     E-mail:  hqluo@iphy.ac.cn;zswang@hmfl.ac.cn

Cite this article: 

Ke Shi(史可), Wenshan Hong(洪文山), Yang Li(李阳), Minjie Zhang(张敏杰), Yongqi Han(韩永琦), Yu Zhao(赵宇), Jiating Wu(吴嘉挺), Ze Wang(王泽), Langsheng Ling(凌浪生), Chuanying Xi(郗传英), Li Pi(皮雳), Huiqian Luo(罗会仟), and Zhaosheng Wang(王钊胜) Doping dependence of resistivity, upper critical field and its anisotropy in overdoped Ba1-xKxFe2As2 (x = 0.6-1) single crystals 2026 Chin. Phys. B 35 017401

[1] Bardeen J, Cooper L N and Schrieffer J R 1957 Phys. Rev. 108 1175
[2] Matsuda Y and Shimahara H 2007 J. Phys. Soc. Jap. 76 051005
[3] Hunte F, Jaroszynski J, Gurevich A, Larbalestier D C, Jin R, Sefat A S, McGuire M A, Sales B C, Christen D K and Mandrus D 2008 Nature 453 903
[4] Senatore C, Flukiger R, Cantoni M, Wu G, Liu R H and Chen X H 2008 Phys. Rev. B 78 054514
[5] Jia Y, Cheng P, Fang L, Luo H, Yang H, Ren C, Shan L, Gu C and Wen H H 2008 Appl. Phys. Lett. 93 032503
[6] Tarantini C, Gurevich A, Jaroszynski J, Balakirev F, Bellingeri E, Pallecchi I, Ferdeghini C, Shen B, Wen H H and Larbalestier D C 2011 Phys. Rev. B 84 184522
[7] Shi K, Zhang M J, Han Y Q, Zhao Y, Wang Z, Ling L S, Tong W, Xi C Y, Pi L, Ni S L, Zhou, M H and Wang Z S 2025 Supercond. Sci. Tech. 38 055023
[8] Khim S, Kim J W, Choi E S, Bang Y, Nohara M, Takagi H and Kim K H 2010 Phys. Rev. B 81 184511
[9] Zhang M, Wu J, Shi K, Ling L, Tong W, Xi C, Pi L, Wosnitza J and Luo H 2023 Appl. Phys. Lett. 123 072602
[10] Chen Z W, Zhang Y, Ma P, Xu Z T, Li Y L, Wang Y, Lu J M, Ma Y W and Gan Z Z 2024 Chin. Phys. B 33 047405
[11] Huang Y N, Ye Z F, Liu D Y and Qiu H Q 2024 Chin. Phys. Lett. 40 097405
[12] Zeng W J, Zhang Z Y, Dong X Y, Tu Y B, Wu Y W, Wang T, Zhang F, Shao S, Hou J, Hou X Y, Hao N, Mu G and Shan L 2025 Chin. Phys. B 34 087402
[13] Lee S, Jiang J, Zhang Y, Bark C W, Weiss J D, Tarantini C, Nelson C T, Jang H W, Folkman C M, Baek S H, Polyanskii A, Abraimov D, Yamamoto A, Park J W, Pan X Q, Hellstrom E E, Larbalestier D C and Eom C B 2010 Nat. Mater. 9 397
[14] Choi E M, Jung S G, Lee N H, Kwon Y S, Kang W N, Kim D H, Jung M H, Lee S I and Sun L 2009 Appl. Phys. Lett. 95 062507
[15] Sasmal K, Lv B, Lorenz B, Guloy A M, Chen F, Xue Y Y and Chu C W 2008 Phys. Rev. Lett. 101 107007
[16] Rotter M, Tegel M and Johrendt D 2008 Phys. Rev. Lett. 101 107006
[17] Wu G, Chen H, Wu T, Xie Y L, Yan Y J, Liu R H, Wang X F, Ying J J and Chen X H 2008 J. Phys.: Condens. Matter 20 422201
[18] Ronning F, Klimczuk T, Bauer E D, Volz H and Thompson J D 2008 J. Phys.: Condens. Matter 20 322201
[19] Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M and Chen X 2010 Phys. Rev. B 82 180520
[20] Krzton-Maziopa A, Shermadini Z, Pomjakushina E, Pomjakushin V, Bendele M, Amato A, Khasanov R, Luetkens H and Conder K 2011 J. Phys.: Condens. Matter 23 052203
[21] Wang A F, Ying J J, Yan Y J, Liu R H, Luo X G, Li Z Y, Wang X F, Zhang M, Ye G J, Cheng P, Xiang Z J and Chen X H 2011 Phys. Rev. B 83 060512
[22] Fang M H, Wang H-D, Dong C H, Li Z J, Feng C M, Chen J and Yuan H Q 2011 Europhys. Lett. 94 27009
[23] Rotter M, Tegel M, Johrendt D, Schellenberg I, Hermes W and Poettgen R 2008 Phys. Rev. B 78 020503
[24] Sefat A S, Jin R, McGuire M A, Sales B C, Singh D J and Mandrus D 2008 Phys. Rev. Lett. 101 117004
[25] Li L J, Luo Y K, Wang Q B, Chen H, Ren Z, Tao Q, Li Y K, Lin X, He M, Zhu Z W, Cao G H and Xu Z A 2009 New J. Phys. 11 025008
[26] Aswartham S, Abdel-Hafiez M, Bombor D, Kumar M, Wolter A U B, Hess C, Evtushinsky D V, Zabolotnyy V B, Kordyuk A A, Kim T K, Borisenko S V, Behr G, Buchner B and Wurmehl S 2012 Phys. Rev. B 85 224520
[27] Qiu X, Zhou S Y, Zhang H, Pan B Y, Hong X C, Dai Y F, Eom M J, Kim J S, Ye Z R, Zhang Y, Feng D L and Li S Y 2012 Phys. Rev. X 2 011010
[28] Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C and Wen H H 2011 Phys. Rev. B 84 184512
[29] Rotter M, Pangerl M, Tegel M and Johrendt D 2008 Angew. Chem. Int. Ed. 47 7949
[30] Li Z, Zhou R, Liu Y, Sun D L, Yang J, Lin C T and Zheng G Q 2012 Phys. Rev. B 86 180501
[31] Luo H, Wang Z, Yang H, Cheng P, Zhu X and Wen H H 2008 Supercond. Sci. Tech. 21 125014
[32] Wang Z S, Luo H Q, Ren C and Wen H H 2008 Phys. Rev. B 78 140501
[33] Tanatar M A, Liu Y, Jaroszynski J, Brooks J S, Lograsso T A and Prozorov R 2017 Phys. Rev. B 96 184511
[34] Zocco D A, Grube K, Eilers F, Wolf T and Lohneysen H V 2013 Phys. Rev. Lett. 111 057007
[35] Yuan H Q, Singleton J, Balakirev F F, Baily S A, Chen G F, Luo J L and Wang N L 2009 Nature 457 565
[36] Shipulin I, Stegani N, Maccari I, Kihou K, Lee C H, Hu Q X, Zheng Y, Yang F Z, Li Y W, Yim C M, Huhne R, Klauss H H, Putti M, Caglieris F, Babaev E and Grinenko V 2023 Nat. Commun. 14 6374
[37] Khan S N and Johnson D D 2014 Phys. Rev. Lett. 112 156401
[38] Hardy F, Bohmer A E, Aoki D, Burger P, Wolf T, Schweiss P, Heid R, Adelmann P, Yao Y X, Kotliar G, Schmalian J and Meingast C 2013 Phys. Rev. Lett. 111 027002
[39] Li Y, Wu D, Shu Y, Liu B, Stuhr U, Deng G, Stampfl A P J, Zhao L, Zhou X, Li S, Pokhriyal A, Ghosh H, Hong W and Luo H 2025 Chin. Phys. Lett. 42 067405
[40] Grinenko V, Sarkar R, Kihou K, Lee C H, Morozov I, Aswartham S, Buchner B, Chekhonin P, Skrotzki W, Nenkov K, H uhne R, Nielsch K, Drechsler S L, Vadimov V L, Silaev M A, Volkov P A, Eremin I, Luetkens H and Klauss H H 2020 Nat. Phys. 16 789
[41] Grinenko V, Weston D, Caglieris F, Wuttke C, Hess C, Gottschall T, Maccari I, Gorbunov D, Zherlitsyn S, Wosnitza J, Rydh A, Kihou K, Lee C H, Sarkar R, Dengre S, Garaud J, Charnukha A, Huhne R, Nielsch K, Buchner B, Klauss H H and Babaev E 2021 Nat. Phys. 17 1254
[42] Tafti F F, Juneau-Fecteau A, Delage M E, de Cotret S R, Reid J P, Wang A F, Luo X G, Chen X H, Doiron-Leyraud N and Taillefer L 2013 Nat. Phys. 9 349
[43] Bud’ko S L, Sturza M, Chung D Y, Kanatzidis M G and Canfield P C 2013 Phys. Rev. B 87 100509
[44] Zhang S, Singh Y P, Huang X Y, Chen X J, Dzero M and Almasan C C 2015 Phys. Rev. B 92 174524
[45] Wu D, Jia J, Yang J, Hong W, Shu Y, Miao T, Yan H, Rong H, Ai P, Zhang X, Yin C, Liu J, Chen H, Yang Y, Peng C, Li C, Zhang S, Zhang F, Yang F, Wang Z, Zong N, Liu L, Li R, Wang X, Peng Q, Mao H, Liu G, Li S, Chen Y, Luo H, Wu X, Xu Z, Zhao L and Zhou X J 2024 Nat. Phys. 20 571
[46] Avci S, Chmaissem O, Chung D Y, Rosenkranz S, Goremychkin E A, Castellan J P, Todorov I S, Schlueter J A, Claus H, Daoud-Aladine A, Khalyavin D D, Kanatzidis M G and Osborn R 2012 Phys. Rev. B 85 184507
[47] Fang Z, Chen W G, Huang P C, Chen Z Y, Ding H W, Zhao H, Qian X X, Jiang S L, Zhang Y and Kuang G L 2024 IEEE Trans. Appl. Supercond. 34 1
[48] Doiron-Leyraud N, Auban-Senzier P, de Cotret S R, Bourbonnais C, Jerome D, Bechgaard K and Taillefer L 2009 Phys. Rev. B 80 214531
[49] Liu Y, Tanatar M A, Straszheim W E, Jensen B, Dennis K W, McCallum R W, Kogan V G, Prozorov R and Lograsso T A 2014 Phys. Rev. B 89 134504
[50] Shen B, Yang H, Wang Z S, Han F, Zeng B, Shan L, Ren C and Wen H H 2011 Phys. Rev. B 84 184512
[51] Yuan J, Chen Q, Jiang K, Feng Z, Lin Z, Yu H, He G, Zhang J, Jiang X, Zhang X, Shi Y, Zhang Y, Qin M, Cheng Z G, Tamura N, Yang Y, Xiang T, Hu J, Takeuchi I, Jin K and Zhao Z 2022 Nature 602 431
[52] Jiang X, Qin M, Wei X, Xu L, Ke J, Zhu H, Zhang R, Zhao Z, Liang Q, Wei Z, Lin Z, Feng Z, Chen F, Xiong P, Yuan J, Zhu B, Li Y, Xi C, Wang Z, Yang M, Wang J, Xiang T, Hu J, Jiang K, Chen Q, Jin K and Zhao Z 2023 Nat. Phys. 19 365
[53] Hodovanets H, Liu Y, Jesche A, Ran S, Mun E D, Lograsso T A, Bud’ko S L and Canfield P C 2014 Phys. Rev. B 89 224517
[54] Liu Y and Lograsso T A 2014 Phys. Rev. B 90 224508
[55] Jacko A C, Fjærestad J O and Powell B J 2009 Nat. Phys. 5 422
[56] Carrington A, Mackenzie A P, Sinclair D C and Cooper J R 1994 Phys. Rev. B 49 13243
[57] Fuchs D T, Zeldov E, Rappaport M, Tamegai T, Ooi S and Shtrikman H 1998 Nature 391 373
[58] Clogston A M 1962 Phys. Rev. Lett. 9 266
[59] Helfand E and Werthamer N R 1966 Phys. Rev. 147 288
[60] Wang Z, Xie T, Kampert E, Forster T, Lu X, Zhang R, Gong D, Li S, Herrmannsdorfer T, Wosnitza J and Luo H 2015 Phys. Rev. B 92 174509
[61] Bristow M, Gower A, Prentice J C A, Watson M D, Zajicek Z, Blundell S J, Haghighirad A A, McCollam A and Coldea A I 2023 Phys. Rev. B 108 184507
[62] Jaroszynski J, Hunte F, Balicas L, Jo Y, Raicevic I, Gurevich A, Lar- balestier D C, Balakirev F F, Fang L, Cheng P, Jia Y and Wen H H 2008 Phys. Rev. B 78 174523
[63] Vinod K, Satya A T, Sharma Shilpam, Sundar C S and Bharathi A 2011 Phys. Rev. B 84 012502
[1] Extremely large magnetoresistance in single-crystalline ZrBi2
Cundong Li(李存东), Binbin Ruan(阮彬彬), Qingxin Dong(董庆新), Jianli Bai(白建利), Libo Zhang(张黎博), Qiaoyu Liu(刘乔宇), Jingwen Cheng(程靖雯), Pinyu Liu(刘品宇), Yu Huang(黄宇), Yingrui Sun(孙英睿), Zhian Ren(任治安), and Genfu Chen(陈根富). Chin. Phys. B, 2025, 34(9): 097307.
[2] Tunable colossal negative magnetoresistance of topological semimetal EuB6 thin sheets
Ke Zhu(祝轲), Qi Qi(齐琦), Yaofeng Xie(谢耀锋), Lulu Pan(潘禄禄), Senhao Lv(吕森浩), Guojing Hu(胡国静), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Lihong Bao(鲍丽宏), Ying Zhang(张颖), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(9): 097308.
[3] Modulation of exchange bias in Py/IrMn films by surface acoustic waves
Jie Dong(董洁), Shuai Mi(米帅), Meihong Liu(刘美宏), Huiliang Wu(吴辉亮), Jinxuan Shi(石金暄), Huifang Qiao(乔慧芳), Qian Zhao(赵乾), Teng-Fei Zhang(张腾飞), Chenbo Zhao(赵晨博), Jianbo Wang(王建波), and Qingfang Liu(刘青芳). Chin. Phys. B, 2025, 34(8): 088502.
[4] Magnetotransport properties of two-dimensional tellurium at high pressure
Huiyuan Guo(郭慧圆), Jialiang Jiang(姜家梁), Boyu Zou(邹博宇), Jie Cui(崔杰), Qinglin Wang(王庆林), Haiwa Zhang(张海娃), Guangyu Wang(王光宇), Guozhao Zhang(张国召), Kai Wang(王凯), Yinwei Li(李印威), and Cailong Liu(刘才龙). Chin. Phys. B, 2025, 34(8): 087301.
[5] Observation of distinct Kondo effect and anomalous Hall effect in V self-intercalated layered antiferromagnet V5S8 crystals
Yaofeng Xie(谢耀锋), Senhao Lv(吕森浩), Qi Qi(齐琦), Guojing Hu(胡国静), Ke Zhu(祝轲), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Ruwen Wang(王汝文), Chenyu Bai(白晨宇), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(8): 087303.
[6] In-plane negative magnetoresistance and quantum oscillations in van der Waals antiferromagnet DyTe3
Qi Qi(齐琦), Senhao Lv(吕森浩), Ke Zhu(祝轲), Yaofeng Xie(谢耀锋), Guojing Hu(胡国静), Zhen Zhao(赵振), Guoyu Xian(冼国裕), Yechao Han(韩烨超), Yang Yang(杨洋), Lihong Bao(鲍丽宏), Xiao Lin(林晓), Hui Guo(郭辉), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(7): 077305.
[7] Chemical pressure manipulation of ferromagnetism in magnetic semiconductor Ba(Zn,Mn,Cu)2As2
Xueqin Zhao(赵雪芹), Jinou Dong(董金瓯), Lingfeng Xie(谢玲凤), Xun Pan(潘洵), Haoyuan Tang(唐浩原), Zhicheng Xu(徐之程), and Fanlong Ning(宁凡龙). Chin. Phys. B, 2025, 34(10): 107510.
[8] Two-dimensional Sb net generated nontrivial topological states in SmAgSb2 probed by quantum oscillations
Jian Yuan(袁健), Xian-Biao Shi(石贤彪), Hong Du(杜红), Tian Li(李田), Chuan-Ying Xi(郗传英), Xia Wang(王霞), Wei Xia(夏威), Bao-Tian Wang(王保田), Rui-Dan Zhong(钟瑞丹), and Yan-Feng Guo(郭艳峰). Chin. Phys. B, 2024, 33(7): 077102.
[9] Anisotropic spin transport and photoresponse characteristics detected by tip movement in magnetic single-molecule junction
Deng-Hui Chen(陈登辉), Zhi Yang(羊志), Xin-Yu Fu(付新宇), Shen-Ao Qin(秦申奥), Yan Yan(严岩), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2024, 33(4): 047201.
[10] Negative magnetoresistance in the antiferromagnetic semimetal V1/3TaS2
Zi Wang(王子), Xin Peng(彭馨), Shengnan Zhang(张胜男), Yahui Su(苏亚慧), Shaodong Lai(赖少东), Xuan Zhou(周旋), Chunxiang Wu(吴春翔), Tingyu Zhou(周霆宇), Hangdong Wang(王杭栋), Jinhu Yang(杨金虎), Bin Chen(陈斌), Huifei Zhai(翟会飞), Quansheng Wu(吴泉生), Jianhua Du(杜建华), Zhiwei Jiao(焦志伟), and Minghu Fang(方明虎). Chin. Phys. B, 2024, 33(3): 037301.
[11] Unconventional room-temperature negative magnetoresistance effect in Au/n-Ge:Sb/Au devices
Xiong He(何雄), Fan-Li Yang(杨凡黎), Hao-Yu Niu(牛浩峪), Li-Feng Wang(王立峰), Li-Zhi Yi(易立志),Yun-Li Xu(许云丽), Min Liu(刘敏), Li-Qing Pan(潘礼庆), and Zheng-Cai Xia(夏正才). Chin. Phys. B, 2024, 33(3): 037504.
[12] Magnetoresistance hysteresis in the superconducting state of kagome CsV3Sb5
Tian Le(乐天), Jinjin Liu(刘锦锦), Zhiwei Wang(王秩伟), and Xiao Lin(林效). Chin. Phys. B, 2024, 33(10): 107402.
[13] Linear magnetoresistance and structural distortion in layered SrCu4-xP2 single crystals
Yong Nie(聂勇), Zheng Chen(陈正), Wensen Wei(韦文森), Huijie Li(李慧杰), Yong Zhang(张勇), Ming Mei(梅明), Yuanyuan Wang(王园园), Wenhai Song(宋文海), Dongsheng Song(宋东升), Zhaosheng Wang(王钊胜), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2024, 33(1): 016108.
[14] Electric modulation of anisotropic magnetoresistance in Pt/HfO2-x/NiOy/Ni heterojunctions
Xiaoyu Ye(叶晓羽), Xiaojian Zhu(朱小健), Huali Yang(杨华礼), Jipeng Duan(段吉鹏), Cui Sun(孙翠), and Run-Wei Li(李润伟). Chin. Phys. B, 2023, 32(8): 087305.
[15] Negative magnetoresistance in Dirac semimetal Cd3As2 with in-plane magnetic field perpendicular to current
Hao-Nan Cui(崔浩楠), Guang-Yu Zhu(祝光宇), Jian-Kun Wang(王建坤), Jia-Jie Yang(杨佳洁), Wen-Zhuang Zheng(郑文壮), Ben-Chuan Lin(林本川), Zhi-Min Liao(廖志敏), Shuo Wang(王硕), and Da-Peng Yu(俞大鹏). Chin. Phys. B, 2023, 32(7): 077305.
No Suggested Reading articles found!