Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 124202    DOI: 10.1088/1674-1056/ade8de
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Super-resolving refractive index measurements with even coherent-state sources and parity detection

Qiang Wang(王强), Xiaohao Yang(杨晓豪), Fu Song(宋甫), and Lili Hao(郝利丽)
School of Physics and Electronic Engineering, Northeast Petroleum University, Daqing 163318, China
Abstract  High-precision refractive index measurement has become a research hotspot in recent years. However, traditional refractive index measurement often adopts intensity detection, whose performance is restricted by the classical detection limit and is thus hard to improve further. In order to break through this limitation, we propose a quantum-enhanced refractive index sensing scheme utilizing even-coherent-state sources in combination with parity detection. In this paper, we analyze the detection performance of the proposed system. Due to the inevitable photon loss in practical applications, the effects of photon loss on resolution and sensitivity are also investigated. Numerical results show that the resolution of the proposed strategy breaks through the Rayleigh limit and achieves super-resolving refractive index measurement. Relative to existing coherent-state schemes, our strategy leads to a twofold resolution improvement. Furthermore, the physical origins of the super-resolution are analyzed.
Keywords:  refractive index measurement      even coherent state      parity photon counting      detection      super-resolution  
Received:  18 March 2025      Revised:  06 June 2025      Accepted manuscript online:  27 June 2025
PACS:  42.50.-p (Quantum optics)  
  42.50.St (Nonclassical interferometry, subwavelength lithography)  
Corresponding Authors:  Xiaohao Yang     E-mail:  yangxiaohao0508@163.com

Cite this article: 

Qiang Wang(王强), Xiaohao Yang(杨晓豪), Fu Song(宋甫), and Lili Hao(郝利丽) Super-resolving refractive index measurements with even coherent-state sources and parity detection 2025 Chin. Phys. B 34 124202

[1] Hu Y, Lv J and Hao Q 2021 Sensors 21 2421
[2] Liu X, Qiaohan W and Wang D 2022 Optik 254 168642
[3] Singh S, Sharma A K, Lohia P, Dwivedi D, Kumar V and Singh P K 2023 Phys. Scr. 98 025813
[4] Rahad R, Rakib A, HaqueMA, Sharar S S and Sagor R H 2023 Results Phys. 49 106478
[5] Tuaimah A M, Taher H J, Tahhan S R, Al-Zahrani F A and Ahmed K 2023 Plasmonics 18 2393
[6] Liu Y, ZhangW, Tong Z, Wang X, Liu D, Wang M and Yu H 2024 Opt. Mater. 148 114933
[7] Wu Y, Liu B, Wang J, Wu J, Mao Y, Ren J, Zhao L, Sun T, Nan T and Han Y 2021 Optik 226 165495
[8] Upadhyay C and Dhawan D 2023 Opt. Quantum Electron. 55 271
[9] Guo X, Li C and Cong J 2022 Optik 271 170030
[10] Li K, Guo Y, Li S, Yin Z, Chen Q, Meng X, Gao Z and Bai G 2023 Plasmonics 18 1093
[11] Chen P, Shu X and Cao H 2017 IEEE Photonics J. 9 1
[12] Li X, Warren-Smith S C, Xie L, Ebendorff-Heidepriem H and Nguyen L V 2020 IEEE Sens. J. 20 6408
[13] Zheng S, Rao W, Cai X, Wu M, Xie T and Wang H 2024 IEEE Photonics J. 24 2799
[14] Wang J, Liu B, Wu Y, Mao Y, Zhao L, Sun T and Nan T 2019 Optik 194 163094
[15] Zhao N, Wang Z, Zhang Z, Lin Q, Yao K, Zhu L, Tian B, Zhao L, Yang P and Jiang Z 2022 Micromachines 13 658
[16] Qi K, Zhang Y, Sun J and Yi G 2020 Opt. Laser Technol. 129 106300
[17] Zhang J, Li Y and Yao G 2023 Int. J. Optomechatronics 17 2182389
[18] Ma Y, Yi Y, Li X, Su C, Zhang M, Geng T, Sun W and Yuan L 2021 Opt. Express 29 31443
[19] Jin B, Wang D, Xu B, Chen L and Yang K 2023 Opt. Fiber Technol. 80 103427
[20] Li Y, Chen H, Zhang Y, Chen Q, Wu B, Fan X, Liu Y and Ma M 2023 Chin. Phys. B 32 054209
[21] Cheng J, Wang C, Li Y, Zhang Y, Liu S and Dong P 2024 Chin. Phys. B 33 084201
[22] Hussain N, Masuk M R, Hossain M F and Kouzani A Z 2023 Opt. Express 31 26910
[23] Wang Q and Wang D 2024 Opt. Fiber Technol. 83 103683
[24] Qi Q, Li Y, Liu T, Zhang P, Dai S and Xu T 2023 Chin. Phys. B 32 014204
[25] Dowling J P 2008 Contemp. Phys. 49 125
[26] Boixo S, Datta A, Davis M J, Flammia S T, Shaji A and Caves C M 2008 Phys. Rev. Lett. 101 040403
[27] Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P and Dowling J P 2000 Phys. Rev. Lett. 85 2733
[28] Qiang W, Qian W, Zhen W and Hao L 2023 Chin. Opt. 16 434
[29] Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 R4649
[30] Gerry C C 2000 Phys. Rev. A 61 043811
[31] Gerry C C and Mimih J 2010 Contemp. Phys. 51 497
[32] Zhang Z, Qiao T, Ma K, Zhang J, Cen L, Wang F and Zhao Y 2016 Opt. Express 24 18477
[33] Sajeev D, Shaik A, Pidishety S and Soorat R 2024 J. Quantum Comput. 6 53
[34] Zhang Z, Qiao T, Song J, Cen L, Zhang J, Li S, Yan L, Wang F and Zhao Y 2017 Opt. Commun. 403 92
[35] Zhang J, Zhang Z, Cen L, Li S, Zhao Y and Wang F 2017 Chin. Phys. B 26 094204
[36] Huver S D, Wildfeuer C F and Dowling J P 2008 Phys. Rev. A 78 063828
[37] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602
[38] Distante E, Jezek M and Andersen U L 2013 Phys. Rev. Lett. 111 033603
[39] Gerry C C 1993 J. Mod. Opt. 40 1053
[40] Roy Bardhan B, Jiang K and Dowling J P 2013 Phys. Rev. A 88 023857
[41] Cohen L, Istrati D, Dovrat L and Eisenberg H 2014 Opt. Express 22 11945
[42] Podoshvedov S A 2012 Opt. Commun. 285 3896
[43] Dakna M, Anhut T, Opatrný T, Knöll L and Welsch D G 1997 Phys. Rev. A 55 3184
[44] Huang K, Le Jeannic H, Ruaudel J, Verma V B, Shaw M D, Marsili F, Nam S W, Wu E, Zeng H and Jeong Y C 2015 Phys. Rev. Lett. 115 023602
[45] Stammer P, Rivera-Dean J, Lamprou T, Pisanty E, Ciappina M F, Tzallas P and Lewenstein M 2022 Phys. Rev. Lett. 128 123603
[46] Zhu D, Zhao Q Y, Choi H, Lu T J, Dane A E, Englund D and Berggren K K 2018 Nat. Nanotechnol. 13 596
[47] Mattioli F, Zhou Z, Gaggero A, Gaudio R, Jahanmirinejad S, Sahin D, Marsili F, Leoni R and Fiore A 2015 Supercond. Sci. Technol. 28 104001
[1] Phase sensitivity of a lossy truncated SU(1,1) interferometer with double-port homodyne detection
Yu-Wei Xiao(肖煜伟), Yue Ji(吉悦), Jia-Yi Wei(魏嘉怡), Jian-Dong Zhang(张建东), and Li-Li Hou(侯丽丽). Chin. Phys. B, 2026, 35(1): 014205.
[2] Development of a ceramic gas-electron-multiplier neutron detector prototype with a large sensitive area
Lin Zhu(朱林), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lixin Zeng(曾莉欣), Liang Xiao(肖亮), Hong Xu(许虹), Fei Jia(贾飞), Chaoyue Zhang(张超月), Yezhao Yang(杨烨钊), Dingfu Li(黎定福), Hao Xiong(熊皓), Yuguang Xie(谢宇广), Yubin Zhao(赵豫斌), Yadong Wei(魏亚东), Zhijia Sun(孙志嘉), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2025, 34(9): 090701.
[3] Dual-band switchable mid-infrared emitter based on In3SbTe2 for gas detection application
Biyuan Wu(吴必园), Xiqiao Huang(黄希桥), and Xiaohu Wu(吴小虎). Chin. Phys. B, 2025, 34(9): 094403.
[4] A high-sensitivity deep-junction single-photon detector for near-infrared imaging
Yuanhao Bi(毕元昊), Dajing Bian(卞大井), Ming Li(李铭), and Yue Xu(徐跃). Chin. Phys. B, 2025, 34(6): 068501.
[5] Amorphous IGMO/IGZO heterojunction thin-film transistors with enhanced ultraviolet detection performance
Jichun Yao(姚继春), Yiyu Zhang(张怡宇), and Xingzhao Liu(刘兴钊). Chin. Phys. B, 2025, 34(5): 057104.
[6] A high light-yield neutron scintillator based on Ce3+-doped lithium glass
Rui-Qiang Song(宋瑞强), Chuang Liu(刘闯), Yi-Yang Long(龙逸洋), Ji-Feng Han(韩纪锋), Jing Ren(任晶), and Sen Qian(钱森). Chin. Phys. B, 2025, 34(5): 050703.
[7] Nondestructive detection of atom counts in laser-trapped 171Yb atoms
Congcong Tian(田聪聪), Qiang Zhu(朱强), Bing Wang(王兵), Dezhi Xiong(熊德智), Zhuanxian Xiong(熊转贤), Lingxiang He(贺凌翔), and Baolong Lyu(吕宝龙). Chin. Phys. B, 2025, 34(2): 023201.
[8] β-Ga2O3/BP heterojunction for deep ultraviolet and infrared narrowband dual-band photodetection
Zhichao Chen(陈志超), Feng Ji(季枫), Yadan Li(李亚丹), Yahan Wang(王雅涵), Xuehao Ge(葛薛豪), Kai Jiang(姜凯), Hai Zhu(朱海), and Xianghu Wang(王相虎). Chin. Phys. B, 2025, 34(12): 128501.
[9] Lamb wave TDTE super-resolution imaging assisted by deep learning
Liu-Jia Sun(孙刘家), Qing-Bang Han(韩庆邦), and Qi-Lin Jin(靳琪琳). Chin. Phys. B, 2025, 34(1): 014301.
[10] Imaging a force field via an optically levitated nanoparticle array
Bihu Lv(吕碧沪), Jiandong Zhang(张建东), and Chuang Li(李闯). Chin. Phys. B, 2024, 33(9): 090702.
[11] A proposal for detecting weak electromagnetic waves around 2.6 μm wavelength with Sr optical clock
Ruo-Shui Han(韩弱水), Wei Wang(王伟), and Tao Wang(汪涛). Chin. Phys. B, 2024, 33(4): 043201.
[12] A nanosecond level current pulse capture taper optical fiber probe based on micron level nitrogen-vacancy color center diamond
Yuchen Bian(卞雨辰), Yangfan Mao(毛扬帆), Honghao Chen(陈鸿浩), Shiyu Ge(葛仕宇), Wentao Lu(卢文韬), Chengkun Wang(王成坤), Sihan An(安思瀚), and Guanxiang Du(杜关祥). Chin. Phys. B, 2024, 33(12): 120301.
[13] Hyperbolic map unravels eight regions in temperature volatility regionalization of Mainland China
Yuxuan Song(宋雨轩), Changgui Gu(顾长贵), Muhua Zheng(郑木华), Aixia Feng(冯爱霞), Yufei Xi(席雨菲), Haiying Wang(王海英), and Huijie Yang(杨会杰). Chin. Phys. B, 2024, 33(12): 128902.
[14] Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding
Yiming Wang(王一铭), Shufeng Huang(黄树锋), Huang Chen(陈煌), Jian Yang(杨健), and Shuting Cai(蔡述庭). Chin. Phys. B, 2024, 33(1): 010502.
[15] Electric modulation of anisotropic magnetoresistance in Pt/HfO2-x/NiOy/Ni heterojunctions
Xiaoyu Ye(叶晓羽), Xiaojian Zhu(朱小健), Huali Yang(杨华礼), Jipeng Duan(段吉鹏), Cui Sun(孙翠), and Run-Wei Li(李润伟). Chin. Phys. B, 2023, 32(8): 087305.
No Suggested Reading articles found!