|
|
|
Superconducting nanowire single photon detector with efficiency over 90% at 2 μm wavelength |
| Zhen Wan(万震)1,2,3,†, Jia Huang(黄佳)2,†,‡, Guangzhao Xu(徐光照)4,†,§, Yu Ding(丁钰)4, Xiaoyu Liu(刘晓宇)2, Yiming Pan(潘一铭)5, Hongxin Xu(徐鸿鑫)2, Hao Li(李浩)1,2,¶, and Lixing You(尤立星)2 |
1 Shanghai Research Center for Quantum Sciences, Shanghai 201315, China; 2 National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences (CAS), Shanghai 200050, China; 3 School of Microelectronics, Shanghai University, Shanghai 201800, China; 4 Photon Technology (Zhejiang) Co., Ltd., Zhejiang 314100, China; 5 School of Information Science and Engineering, NingboTech University, Ningbo 315100, China |
|
|
|
|
Abstract We here report a high system detection efficiency (SDE) superconducting single-photon detector (SSPD) at 2 μm wavelength. The device integrates a SiO2/Ta2O5 distributed Bragg reflector (DBR) and a sandwich-structured double-layer NbN nanowire to enhance the optical absorption efficiency. A cold development technique is implemented to optimize the superconducting nanowires with sub-40-nm linewidths, thus enhancing the intrinsic detection efficiency (IDE). The fabricated SSPD shows an SDE exceeding 90% at 2 μm wavelength. Moreover, the detector allows an operational working temperature of 2.2 K provided by a compact GM cryo-cooler. This detector delivers excellent performance at the 2 μm wavelength, and its optimized structural design implies promising potential for extending detection toward longer infrared bands. It thus holds value for advancing high-sensitivity quantum technologies, mid-infrared optical communications, and dark matter detection research.
|
Received: 02 September 2025
Revised: 29 October 2025
Accepted manuscript online: 05 November 2025
|
|
PACS:
|
85.25.-j
|
(Superconducting devices)
|
| |
42.60.Lh
|
(Efficiency, stability, gain, and other operational parameters)
|
| |
95.85.Jq
|
(Near infrared (0.75-3 μm))
|
|
| Fund: This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA0520403), Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01)), Innovation Program for Quantum Science and Technology (Grant No. 2023ZD0300100), and the National Natural Science Foundation of China (Grant Nos. U24A20320 and 62401554). |
Corresponding Authors:
Jia Huang, Guangzhao Xu, Hao Li
E-mail: huangj@mail.sim.ac.cn;gzxu@cnphotec.com;lihao@mail.sim.ac.cn
|
Cite this article:
Zhen Wan(万震), Jia Huang(黄佳), Guangzhao Xu(徐光照), Yu Ding(丁钰), Xiaoyu Liu(刘晓宇), Yiming Pan(潘一铭), Hongxin Xu(徐鸿鑫), Hao Li(李浩), and Lixing You(尤立星) Superconducting nanowire single photon detector with efficiency over 90% at 2 μm wavelength 2026 Chin. Phys. B 35 018501
|
[1] Maring N, Fyrillas A, Pont M, et al. 2024 Nat. Photon. 18 603 [2] Du F F, Fan G, Wu Y M and Ren B C 2023 Chin. Phys. B 32 060304 [3] Wollman E E, Allmaras J P, Beyer A D, Korzh B, Runyan M C, Narvaez L, Farr W H, Marsili F, Briggs R M, Miles G J and Shaw M D 2024 Opt. Express 32 48185 [4] Wang F, Ren F, Ma Z, Qu L, Gourgues R, Xu C, Baghdasaryan A, Li J, Zadeh I E, Los J W N, Fognini A, Qin-Dregely J and Dai H 2022 Nat. Nanotechnol. 17 653 [5] Bi Y H, Bian D J, Li M and Xu Y 2025 Chin. Phys. B 34 068501 [6] Sadygov Z, Sadigov A and Khorev S 2020 Phys. Part. Nuclei Lett. 17 160 [7] Chang J, Los J W N, Tenorio-Pearl J O, Noordzij N, Gourgues R, Guardiani A, Zichi J R, Pereira S F, Urbach H P, Zwiller V, Dorenbos S N and Esmaeil Zadeh I 2021 APL Photonics 6 036114 [8] Hu P, Li H, You L, Wang H, Xiao Y, Huang J, Yang X, Zhang W, Wang Z and Xie X 2020 Opt. Express 28 36884 [9] Reddy D V, Nerem R R, Nam S W, Mirin R P and Verma V B 2020 Optica 7 1649 [10] Chiles J, Charaev I, Lasenby R, Baryakhtar M, Huang J, Roshko A, Burton G, Colangelo M, Van Tilburg K, Arvanitaki A, Nam S W and Berggren K K 2022 Phys. Rev. Lett. 128 231802 [11] Korzh B, Zhao Q Y, Allmaras J P, et al. 2020 Nat. Photonics 14 250 [12] Zhang T, Huang J, Zhang X, Ding C, Yu H, Xiao Y, Lv C, Liu X, Wang Z, You L, Xie X and Li H 2024 Photon. Res. 12 1328 [13] Bellei F, Cartwright A P, McCaughan A N, Dane A E, Najafi F, Zhao Q and Berggren K K 2016 Opt. Express 24 3248 [14] Larsson J, Bood J, Xu C T, Yang X, Lindberg R, Laurell F and Brydegaard M 2019 Opt. Express 27 17348 [15] Song G, Qin T, Liu H, Xu G B, Pan Y Y, Xiong F X, Gu K S, Sun G P and Chen Z D 2010 Lung Cancer 67 227 [16] Taylor G G, MacKenzie E N, Korzh B, Morozov D V, Bumble B, Beyer A D, Allmaras J P, Shaw M D and Hadfield R H 2022 Appl. Phys. Lett. 121 214001 [17] Pan Y, Zhou H, Zhang X, Yu H, Zhang L, Si M, Li H, You L and Wang Z 2022 Opt. Express 30 40044 [18] Chang J, Los J W N, Gourgues R, Steinhauer S, Dorenbos S N, Pereira S F, Urbach H P, Zwiller V and Esmaeil Zadeh I 2022 Photon. Res. 10 1063 [19] Verma V B, Korzh B, Walter A B, Lita A E, Briggs R M, Colangelo M, Zhai Y, Wollman E E, Beyer A D, Allmaras J P, Vora H, Zhu D, Schmidt E, Kozorezov A G, Berggren K K, Mirin R P, Nam S W and Shaw M D 2021 APL Photonics 6 056101 [20] Chen Q, Ge R, Zhang L, Li F, Zhang B, Jin F, Han H, Dai Y, He G, Fei Y, Wang X, Wang H, Jia X, Zhao Q, Tu X, Kang L, Chen J and Wu P 2021 Science Bulletin 66 965 [21] Wang J, Liu C, Min M, Hu X, Lu Q and Husi L 2018 IEEE Trans. Geosci. Remote Sensing 56 5207 [22] Taylor G G, Morozov D, Gemmell N R, Erotokritou K, Miki S, Terai H and Hadfield R H 2019 Opt. Express 27 38147 [23] Zhou H, Pan Y, You L, Li H, Wang Y, Tang Y, Wang H, Liu X and Wang Z 2019 IEEE Photonics J. 11 1 [24] Chang J, Los J W N, Gourgues R, Steinhauer S, Dorenbos S N, Pereira S F, Urbach H P, Zwiller V and Esmaeil Zadeh I 2022 Photon. Res. 10 1063 [25] China F, Yabuno M, Mima S, Miyajima S, Terai H and Miki S 2023 Opt. Express 31 20471 [26] Xu G Z, Zhang W J, You L X, Xiong J M, Sun X Q, Huang H, Ou X, Pan Y M, Lv C L, Li H, Wang Z and Xie X M 2021 Photon. Res. 9 958 [27] Marsili F, Bellei F, Najafi F, Dane A E, Dauler E A, Molnar R J and Berggren K K 2012 Nano Lett. 12 4799 [28] Ocola L E and Stein A 2006 J. Vac. Sci. Technol. B 24 3061 [29] Tobing L Y M, Tjahjana L and Zhang D H 2012 J. Vac. Sci. Technol. B 30 051601 [30] Xu G, Zhang W, You L, Wang Y, Xiong J, Fan D H, Wu L, Yu H, Li H and Wang Z 2023 Opt. Express 31 16348 [31] Marcuse D 1993 IEEE J. Quantum Electron. 29 2957 [32] Shibata H, Shimizu K, Takesue H and Tokura Y 2013 Appl. Phys. Express 6 072801 [33] Yang X, Li H, Zhang W, You L, Zhang L, Liu X, Wang Z, Peng W, Xie X and Jiang M 2014 Opt. Express 22 16267 [34] Zhang W J, Yang X Y, Li H, You L X, Lv C L, Zhang L, Zhang C J, Liu X Y, Wang Z and Xie X M 2018 Supercond. Sci. Technol. 31 035012 [35] Marsili F, Verma V B, Stern J A, Harrington S, Lita A E, Gerrits T, Vayshenker I, Baek B, Shaw M D, Mirin R P and Nam S W 2013 Nat. Photon. 7 210 [36] You L, Yang X, He Y, Zhang W, Liu D, Zhang W, Zhang L, Zhang L, Liu X, Chen S, Wang Z and Xie X 2013 AIP Advances 3 072135 [37] Kerman A J, Rosenberg D, Molnar R J and Dauler E A 2013 J. Appl. Phys. 113 144511 [38] Zhao Q, Jia T, Gu M, Wan C, Zhang L, Xu W, Kang L, Chen J and Wu P 2014 Opt. Lett. 39 1869 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|