A high light-yield neutron scintillator based on Ce3+-doped lithium glass
Rui-Qiang Song(宋瑞强)1,3,†, Chuang Liu(刘闯)2,†, Yi-Yang Long(龙逸洋)1, Ji-Feng Han(韩纪锋)1,‡, Jing Ren(任晶)2,§, and Sen Qian(钱森)3,¶
1 Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China; 2 College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China; 3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract The development of low-cost and highly efficient thermal neutron detection materials to substitute the rare and expensive He gas is important for applications requiring thermal neutron detection. Lithium-based glass (Li glass) is a promising candidate due to its simple fabrication process and low cost. This paper reports the optical properties and scintillation performance of a new Ce-doped Li glass, whose luminescence efficiency is significantly enhanced with a light yield of about 4770 ph/MeV, which is about 54% of that of BGO crystal, and the energy resolution is 14.5% for 662 keV gamma rays. The Ce-doped Li glass shows a high light yield of about 7058 ph/neutron, which is about 1.18 times that of the reference GS20 glass. The Ce-doped Li glass exhibits stronger gamma ray suppression capability compared to GS20 glass samples. Further optimizing the Ce concentration and Li content is expected to achieve much superior neutron detection efficiency, positioning it as a promising alternative to He gas for efficient thermal neutron detection.
Fund: Project supported by the National Key R&D Program of China (Grant No. 2023YFF0721700) and the National Natural Science Foundation of China (Grant No. 12475312).
Corresponding Authors:
Ji-Feng Han, Jing Ren, Sen Qian
E-mail: hanjf@scu.edu.cn;ren.jing@hrbeu.edu.cn;qians@ihep.ac.cn
Cite this article:
Rui-Qiang Song(宋瑞强), Chuang Liu(刘闯), Yi-Yang Long(龙逸洋), Ji-Feng Han(韩纪锋), Jing Ren(任晶), and Sen Qian(钱森) A high light-yield neutron scintillator based on Ce3+-doped lithium glass 2025 Chin. Phys. B 34 050703
[1] Cai X J, Yu Q, Huang C, Tang B, Zhou S H, Wang X H, Yue X P and Sun Z J 2023 Chin. Phys. B 32 110701 [2] Yue X P, Zhu Z F, Tang B, Huang C, Yu Q, Chen S J,Wang X K, Hong X, Zhou S H, Cai X J, Yang H, Wan Z Y, Sun Z J and Liu Y T 2023 Chin. Phys. B 32 090402 [3] Arkharov A M, Arkharov I A, Dolgopyatov D A and Bondarenko V L 2013 Chem. Petrol. Eng. 49 41 [4] Zhou C, Melton A G, Burgett E, Hertel N and Ferguson I T 2019 Sci. Rep. 9 17551 [5] Kumar S, Herzkamp M, Durini D, Nöldgen H and Waasen S V 2020 Nucl. Instrum. Methods Phys. Res. Sec. A 954 161697 [6] Dosovitskiy G, Akimova O, Amelina A, S Belus, A Fedorov, Karpyuk P, Kozlov D, Mechinsky V, Mikhlin A, Retivov V, Smyslova V, Volkov P and Korzhik M 2020 Rev. J. Chem. 10 1 [7] Ciéslak M, Gamage K and Glover R 2019 Crystals 9 480 [8] Britvich G I, Vasil’chenko V G, Gilitsky Y V, Chubenko A P, Kushnirenko A E, Mamidzhanyan E A, Pavluchenko V P, Pikalov V A, Romakhin V A, Soldatov A P, Sumaneev O V, Chernichenko S K, Shein I V and Shepetov A L 2005 Nucl. Instrum. Methods Phys. Res. Sec. A 550 343 [9] Nguyen L Q, Gabella G, Goldblum B L, Laplace T A, Carlson J S, Brubaker E and Feng P L 2021 Nucl. Instrum. Methods Phys. Res. Sec. A 988 164898 [10] Yuan D, Víllora E G, Kawaguchi N, Daisuke Nakauchi, Kato T, Yanagida T and Shimamura K 2022 Jpn. J. Appl. Phys 62 010614 [11] Ruan J, Xu M, Chen L, Sun B, Liu B, Liu J, Zhang Z, He S, Zhao K and Ouyang X 2020 Nucl. Instrum. Methods Phys. Res. Sec. A 953 163190 [12] Zaitseva N, Glenn A, Martínez H, Carman L, Iwona Pawełczak, Faust M and Payne S A 2013 Nucl. Instrum. Methods Phys. Res. Sec. A 729 747 [13] Doan T C, Majety S, Grenadier S, Li J, Lin J Y and Jiang H X 2015 Nucl. Instrum. Methods Phys. Res. Sec. A 783 121 [14] Song R, Yan X, Han J, Luo X, Ren F, Zhang Y, Han Z, Wen C, Zhang X, Chen L, Lin W, Qu G, Liu X, Leng Q, Zhu J, Qian S and Wang Z 2023 IEEE Trans. Nucl. Sci. 70 2148 [15] Sykora G J, Mann S E, Mauri G, Schooneveld E M and Rhodes and Rhodes N J 2024 Opt. Mater. X 24 100373 [16] Min S, Kang H, Seo B, Cheong J, Roh C and Hong S 2021 Energies 14 7701 [17] Kojima T, Katagiri M, Tsutsui N, Imai K, MatsubayashiMand Sakasai K 2004 Nucl. Instrum. Methods Phys. Res. Sec. A 529 325 [18] Syntfeld A, Moszynski M, Arlt R, Balcerzyk M, Kapusta M, Majorov M, Marcinkowski R, Schotanus P, Swoboda M and Wolski D 2005 IEEE Trans. Nucl. Sci. 52 3151 [19] Gektin A V, Shiran N V and Voronova V V 1997 IEEE Trans. Nucl. Sci. 44 857 [20] Song R Q, Han J F, Yan X Y, Luo X B, Ren F X, Han Z,Wen C, Zhang X, Zhang Y R, Chen L, Yi C Q, Qu G F, Liu X Q, Lin W P, Leng Q Z, Zhu J J, Qian S, Wang Z G, Tong Y F and Tang G 2023 Nucl. Instrum. Methods Phys. Res. Sec. A 1055 168533 [21] Tong Y F,Wei Q H, Song R Q, Zheng Z, Ma L S, Hua Z H, Qian S and Qin L S 2023 Opt. Mater. 142 114119 [22] Ren F X, Han J F, Song R Q, Qian S, Wei Q H, Tang G, Liu X Q, Qu G F, Zhang J X, Yi C Q, Chen Y M, Ren P P, Sun X Y, Cai H, Ban H Y, Wang Z L and Ren J 2024 J. Instrum. 19 P08025 [23] Yi C Q, Han J F, Song R Q, Yan X Y, Ren F X, Luo X B, Han Z, Wen C, Qu G F, Liu X Q, Lin W P, Wang P, Fan Y X, Qian S, Wang Z G, Tang G, Qin L S,Wang X and Liu J 2023 Nucl. Instrum. Methods Phys. Res. Sec. A 1055 168561 [24] Kim C, Lee W, Melis A, Elmughrabi A, Lee K, Park C and Yeom J Y 2021 Crystals 11 669 [25] Nikl M and Yoshikawa A 2015 Adv. Opt. Mater. 3 463 [26] Tong Y F,Wei Q H, Shu C, Yin H, Zhang S Y, Zheng Z Q, Cai P Q, Liu Z G, Ma L S, Song R Q, Hua Z H, Qian S and Qin L S 2023 J. Cryst. 613 127200 [27] MooreME, Pavel Trtik, Lousteau J, Pugliese D, Brambilla G and Hayward J P 2019 J. Lightwave Technol. 37 5699 [28] Katagiri M, K Sakasai, M Matsubayashi and Kojima T 2004 Nucl. Instrum. Methods Phys. Res. Sec. A 529 317 [29] Stephan M, Zachau M, Gröting M, Karplak O, Eyert V, Mishra K C and Schmidt P C 2005 J. Lumin. 114 255 [30] Nikl M, Bruza P, Panek D, Vrbova M, Mihokova E, Mares J A, Beitlerova A, Kawaguchi N, Fukuda K and Yoshikawa A 2013 Appl. Phys. Lett. 102 161907 [31] Dorenbos P 2002 Nucl. Instrum. Methods Phys. Res. Sec. A 486 208 [32] Struebing C, Chong J, Lee G, Zavala M, Erickson A, Ding Y, Wang CL, Diawara Y, Engels R, Wagner B and Kang Z 2016 Appl. Phys. Lett. 108 153106 [33] Kimura H, Shinozaki K, Okada G, Kawaguchi N and Yanagida T 2018 J. Non. Cryst. Solids. 508 46 [34] Miyazaki K, Daisuke Nakauchi, Kato T, Kawaguchi N and Yanagida T 2023 Opt. Mater. 146 114557 [35] Teng L M, Zhang W N, Chen W P, Cao J K, Sun X Y and Guo H 2020 Cern. Int. 46 10718 [36] Sun X Y, Liu X J, Wu Y, Xiao Z, Chen Q, Wang W F and Yang Q M 2019 Cern. Int. 46 4035 [37] Hua Z H, Qian S, Cai H, Du D J, Fan R R, Han J F, Hu C, Hu P, Liu S, Liu Y, Ma L S, Qin L S, Ren J, Song R Q, Sui Z X, Sun X L, Sun X Y, Tang G, Wang Z G, Wu Q, Yang D, Zheng L R and Zhu Y 2024 Radiat. Detect. Technol. Methods 8 1107 [38] Bliss M, Craig R A and Reeder P L 1994 Nucl. Instrum. Methods Phys. Res. Sec. A 342 357 [39] Bollinger L M, Thomas G N and Ginther R J 1962 Nucl. Instrum. Methods Phys. Res. Sec. A 17 97 [40] Mesick K E, Coupland D D S and Stonehill L C 2017 Nucl. Instrum. Methods Phys. Res. Sec. A 841 139 [41] Ferrulli F, M. Labalme and M. Silari 2022 Nucl. Instrum. Methods Phys. Res. Sec. A 1029 166460 [42] Saha S, Ntarisa A V, Nguyen D Q, Luan N T, Vuong P Q, Kim H J, Intachai N, Kothan S and Kaewkhao J 2022 Radiat. Phys. Chem. 199 110285 [43] Kamada K, Endo T, Tsutumi K, Yanagida T, Fujimoto Y, Fukabori A, Yoshikawa A, Pejchal J and Nikl M 2011 Cryst. Growth. Des. 11 4484 [44] Liu J, Zhao X D, Xu Y S, Wu H D, Xu X H, Lu P, Zhang X H, Zhao X J, Xia M L, Tang J, Niu G D 2023 Laser. Photonics. Rev. 17 2300006 [45] Kumar V and Luo Z 2021 Photonics 8 71
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.