Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 050703    DOI: 10.1088/1674-1056/adb94b
GENERAL Prev   Next  

A high light-yield neutron scintillator based on Ce3+-doped lithium glass

Rui-Qiang Song(宋瑞强)1,3,†, Chuang Liu(刘闯)2,†, Yi-Yang Long(龙逸洋)1, Ji-Feng Han(韩纪锋)1,‡, Jing Ren(任晶)2,§, and Sen Qian(钱森)3,¶
1 Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China;
2 College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China;
3 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  The development of low-cost and highly efficient thermal neutron detection materials to substitute the rare and expensive 3He gas is important for applications requiring thermal neutron detection. Lithium-based glass (Li glass) is a promising candidate due to its simple fabrication process and low cost. This paper reports the optical properties and scintillation performance of a new Ce3+-doped Li glass, whose luminescence efficiency is significantly enhanced with a light yield of about 4770 ph/MeV, which is about 54% of that of BGO crystal, and the energy resolution is 14.5% for 662 keV gamma rays. The Ce3+-doped Li glass shows a high light yield of about 7058 ph/neutron, which is about 1.18 times that of the reference GS20 glass. The Ce3+-doped Li glass exhibits stronger gamma ray suppression capability compared to GS20 glass samples. Further optimizing the Ce3+ concentration and 6Li content is expected to achieve much superior neutron detection efficiency, positioning it as a promising alternative to 3He gas for efficient thermal neutron detection.
Keywords:  thermal neutron detection      neutron scintillator      Li glass      light yield  
Received:  30 December 2024      Revised:  13 February 2025      Accepted manuscript online:  24 February 2025
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  28.20.Fc (Neutron absorption)  
  29.30.Hs (Neutron spectroscopy)  
  29.40.Mc (Scintillation detectors)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2023YFF0721700) and the National Natural Science Foundation of China (Grant No. 12475312).
Corresponding Authors:  Ji-Feng Han, Jing Ren, Sen Qian     E-mail:  hanjf@scu.edu.cn;ren.jing@hrbeu.edu.cn;qians@ihep.ac.cn

Cite this article: 

Rui-Qiang Song(宋瑞强), Chuang Liu(刘闯), Yi-Yang Long(龙逸洋), Ji-Feng Han(韩纪锋), Jing Ren(任晶), and Sen Qian(钱森) A high light-yield neutron scintillator based on Ce3+-doped lithium glass 2025 Chin. Phys. B 34 050703

[1] Cai X J, Yu Q, Huang C, Tang B, Zhou S H, Wang X H, Yue X P and Sun Z J 2023 Chin. Phys. B 32 110701
[2] Yue X P, Zhu Z F, Tang B, Huang C, Yu Q, Chen S J,Wang X K, Hong X, Zhou S H, Cai X J, Yang H, Wan Z Y, Sun Z J and Liu Y T 2023 Chin. Phys. B 32 090402
[3] Arkharov A M, Arkharov I A, Dolgopyatov D A and Bondarenko V L 2013 Chem. Petrol. Eng. 49 41
[4] Zhou C, Melton A G, Burgett E, Hertel N and Ferguson I T 2019 Sci. Rep. 9 17551
[5] Kumar S, Herzkamp M, Durini D, Nöldgen H and Waasen S V 2020 Nucl. Instrum. Methods Phys. Res. Sec. A 954 161697
[6] Dosovitskiy G, Akimova O, Amelina A, S Belus, A Fedorov, Karpyuk P, Kozlov D, Mechinsky V, Mikhlin A, Retivov V, Smyslova V, Volkov P and Korzhik M 2020 Rev. J. Chem. 10 1
[7] Ciéslak M, Gamage K and Glover R 2019 Crystals 9 480
[8] Britvich G I, Vasil’chenko V G, Gilitsky Y V, Chubenko A P, Kushnirenko A E, Mamidzhanyan E A, Pavluchenko V P, Pikalov V A, Romakhin V A, Soldatov A P, Sumaneev O V, Chernichenko S K, Shein I V and Shepetov A L 2005 Nucl. Instrum. Methods Phys. Res. Sec. A 550 343
[9] Nguyen L Q, Gabella G, Goldblum B L, Laplace T A, Carlson J S, Brubaker E and Feng P L 2021 Nucl. Instrum. Methods Phys. Res. Sec. A 988 164898
[10] Yuan D, Víllora E G, Kawaguchi N, Daisuke Nakauchi, Kato T, Yanagida T and Shimamura K 2022 Jpn. J. Appl. Phys 62 010614
[11] Ruan J, Xu M, Chen L, Sun B, Liu B, Liu J, Zhang Z, He S, Zhao K and Ouyang X 2020 Nucl. Instrum. Methods Phys. Res. Sec. A 953 163190
[12] Zaitseva N, Glenn A, Martínez H, Carman L, Iwona Pawełczak, Faust M and Payne S A 2013 Nucl. Instrum. Methods Phys. Res. Sec. A 729 747
[13] Doan T C, Majety S, Grenadier S, Li J, Lin J Y and Jiang H X 2015 Nucl. Instrum. Methods Phys. Res. Sec. A 783 121
[14] Song R, Yan X, Han J, Luo X, Ren F, Zhang Y, Han Z, Wen C, Zhang X, Chen L, Lin W, Qu G, Liu X, Leng Q, Zhu J, Qian S and Wang Z 2023 IEEE Trans. Nucl. Sci. 70 2148
[15] Sykora G J, Mann S E, Mauri G, Schooneveld E M and Rhodes and Rhodes N J 2024 Opt. Mater. X 24 100373
[16] Min S, Kang H, Seo B, Cheong J, Roh C and Hong S 2021 Energies 14 7701
[17] Kojima T, Katagiri M, Tsutsui N, Imai K, MatsubayashiMand Sakasai K 2004 Nucl. Instrum. Methods Phys. Res. Sec. A 529 325
[18] Syntfeld A, Moszynski M, Arlt R, Balcerzyk M, Kapusta M, Majorov M, Marcinkowski R, Schotanus P, Swoboda M and Wolski D 2005 IEEE Trans. Nucl. Sci. 52 3151
[19] Gektin A V, Shiran N V and Voronova V V 1997 IEEE Trans. Nucl. Sci. 44 857
[20] Song R Q, Han J F, Yan X Y, Luo X B, Ren F X, Han Z,Wen C, Zhang X, Zhang Y R, Chen L, Yi C Q, Qu G F, Liu X Q, Lin W P, Leng Q Z, Zhu J J, Qian S, Wang Z G, Tong Y F and Tang G 2023 Nucl. Instrum. Methods Phys. Res. Sec. A 1055 168533
[21] Tong Y F,Wei Q H, Song R Q, Zheng Z, Ma L S, Hua Z H, Qian S and Qin L S 2023 Opt. Mater. 142 114119
[22] Ren F X, Han J F, Song R Q, Qian S, Wei Q H, Tang G, Liu X Q, Qu G F, Zhang J X, Yi C Q, Chen Y M, Ren P P, Sun X Y, Cai H, Ban H Y, Wang Z L and Ren J 2024 J. Instrum. 19 P08025
[23] Yi C Q, Han J F, Song R Q, Yan X Y, Ren F X, Luo X B, Han Z, Wen C, Qu G F, Liu X Q, Lin W P, Wang P, Fan Y X, Qian S, Wang Z G, Tang G, Qin L S,Wang X and Liu J 2023 Nucl. Instrum. Methods Phys. Res. Sec. A 1055 168561
[24] Kim C, Lee W, Melis A, Elmughrabi A, Lee K, Park C and Yeom J Y 2021 Crystals 11 669
[25] Nikl M and Yoshikawa A 2015 Adv. Opt. Mater. 3 463
[26] Tong Y F,Wei Q H, Shu C, Yin H, Zhang S Y, Zheng Z Q, Cai P Q, Liu Z G, Ma L S, Song R Q, Hua Z H, Qian S and Qin L S 2023 J. Cryst. 613 127200
[27] MooreME, Pavel Trtik, Lousteau J, Pugliese D, Brambilla G and Hayward J P 2019 J. Lightwave Technol. 37 5699
[28] Katagiri M, K Sakasai, M Matsubayashi and Kojima T 2004 Nucl. Instrum. Methods Phys. Res. Sec. A 529 317
[29] Stephan M, Zachau M, Gröting M, Karplak O, Eyert V, Mishra K C and Schmidt P C 2005 J. Lumin. 114 255
[30] Nikl M, Bruza P, Panek D, Vrbova M, Mihokova E, Mares J A, Beitlerova A, Kawaguchi N, Fukuda K and Yoshikawa A 2013 Appl. Phys. Lett. 102 161907
[31] Dorenbos P 2002 Nucl. Instrum. Methods Phys. Res. Sec. A 486 208
[32] Struebing C, Chong J, Lee G, Zavala M, Erickson A, Ding Y, Wang CL, Diawara Y, Engels R, Wagner B and Kang Z 2016 Appl. Phys. Lett. 108 153106
[33] Kimura H, Shinozaki K, Okada G, Kawaguchi N and Yanagida T 2018 J. Non. Cryst. Solids. 508 46
[34] Miyazaki K, Daisuke Nakauchi, Kato T, Kawaguchi N and Yanagida T 2023 Opt. Mater. 146 114557
[35] Teng L M, Zhang W N, Chen W P, Cao J K, Sun X Y and Guo H 2020 Cern. Int. 46 10718
[36] Sun X Y, Liu X J, Wu Y, Xiao Z, Chen Q, Wang W F and Yang Q M 2019 Cern. Int. 46 4035
[37] Hua Z H, Qian S, Cai H, Du D J, Fan R R, Han J F, Hu C, Hu P, Liu S, Liu Y, Ma L S, Qin L S, Ren J, Song R Q, Sui Z X, Sun X L, Sun X Y, Tang G, Wang Z G, Wu Q, Yang D, Zheng L R and Zhu Y 2024 Radiat. Detect. Technol. Methods 8 1107
[38] Bliss M, Craig R A and Reeder P L 1994 Nucl. Instrum. Methods Phys. Res. Sec. A 342 357
[39] Bollinger L M, Thomas G N and Ginther R J 1962 Nucl. Instrum. Methods Phys. Res. Sec. A 17 97
[40] Mesick K E, Coupland D D S and Stonehill L C 2017 Nucl. Instrum. Methods Phys. Res. Sec. A 841 139
[41] Ferrulli F, M. Labalme and M. Silari 2022 Nucl. Instrum. Methods Phys. Res. Sec. A 1029 166460
[42] Saha S, Ntarisa A V, Nguyen D Q, Luan N T, Vuong P Q, Kim H J, Intachai N, Kothan S and Kaewkhao J 2022 Radiat. Phys. Chem. 199 110285
[43] Kamada K, Endo T, Tsutumi K, Yanagida T, Fujimoto Y, Fukabori A, Yoshikawa A, Pejchal J and Nikl M 2011 Cryst. Growth. Des. 11 4484
[44] Liu J, Zhao X D, Xu Y S, Wu H D, Xu X H, Lu P, Zhang X H, Zhao X J, Xia M L, Tang J, Niu G D 2023 Laser. Photonics. Rev. 17 2300006
[45] Kumar V and Luo Z 2021 Photonics 8 71
[1] Suppression of the vapor cell temperature error in a spin-exchange relaxation-free comagnetometer
Jia-Li Liu(刘佳丽), Li-Wei Jiang(姜丽伟), Chi Fang(方驰), Xin Zhao(赵鑫), and Yuan-Qiang Chen(陈远强). Chin. Phys. B, 2024, 33(12): 120701.
[2] Deep learning-assisted common temperature measurement based on visible light imaging
Jia-Yi Zhu(朱佳仪), Zhi-Min He(何志民), Cheng Huang(黄成), Jun Zeng(曾峻), Hui-Chuan Lin(林惠川), Fu-Chang Chen(陈福昌), Chao-Qun Yu(余超群), Yan Li(李燕), Yong-Tao Zhang(张永涛), Huan-Ting Chen(陈焕庭), and Ji-Xiong Pu(蒲继雄). Chin. Phys. B, 2024, 33(8): 080701.
[3] Performance optimization of a SERF atomic magnetometer based on flat-top light beam
Ziqi Yuan(袁子琪), Junjian Tang(唐钧剑), Shudong Lin(林树东), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2024, 33(6): 060703.
[4] Microwave electrometry with Rydberg atoms in a vapor cell using microwave amplitude modulation
Jian-Hai Hao(郝建海), Feng-Dong Jia(贾凤东), Yue Cui(崔越), Yu-Han Wang(王昱寒), Fei Zhou(周飞), Xiu-Bin Liu(刘修彬), Jian Zhang(张剑), Feng Xie(谢锋), Jin-Hai Bai(白金海), Jian-Qi You(尤建琦), Yu Wang(王宇), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2024, 33(5): 050702.
[5] Thermal-contact capacity of one-dimensional attractive Gaudin—Yang model
Xiao-Min Zhang(张小敏), Song Cheng(程颂), and Yang-Yang Chen(陈洋洋). Chin. Phys. B, 2024, 33(4): 040203.
[6] Observer-based dynamic event-triggered control for distributed parameter systems over mobile sensor-plus-actuator networks
Wenying Mu(穆文英), Bo Zhuang(庄波), and Fang Qiu(邱芳). Chin. Phys. B, 2024, 33(4): 040204.
[7] Building and characterizing a stylus ion-trap system
Tai-Hao Cui(崔太豪), Ya-Qi Wei(魏雅琪), Ji Li(李冀), Quan Yuan(袁泉), Shuang-Qing Dai(戴双晴), Pei-Dong Li(李沛东), Fei Zhou(周飞), Jian-Qi Zhang(张建奇), Zhu-Jun Zheng(郑驻军), Liang Chen(陈亮), and Mang Feng(冯芒). Chin. Phys. B, 2024, 33(4): 043701.
[8] Giant and controllable Goos—Hänchen shift of a reflective beam off a hyperbolic metasurface of polar crystals
Tian Xue(薛天), Yu-Bo Li(李宇博), Hao-Yuan Song(宋浩元), Xiang-Guang Wang(王相光), Qiang Zhang(张强), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), and Xuan-Zhang Wang(王选章). Chin. Phys. B, 2024, 33(1): 014207.
[9] Quasi-anti-parity—time-symmetric single-resonator micro-optical gyroscope with Kerr nonlinearity
Jingtong Geng(耿靖童), Shuyi Xu(徐书逸), Ting Jin(靳婷), Shulin Ding(丁舒林), Liu Yang(杨柳), Ying Wang(王颖), and Yonggang Zhang(张勇刚). Chin. Phys. B, 2024, 33(1): 014208.
[10] Optical anapole modes in hybrid metal-dielectric nanoantenna for near-field enhancement and optical sensing
Debao Wang(王德宝), Jingwei Lv(吕靖薇), Wei Liu(刘伟), Yanru Ren(任艳茹), Wei Li(李薇), Xinchen Xu(许鑫辰), Chao Liu(刘超), and Paul K Chu(朱剑豪). Chin. Phys. B, 2023, 32(11): 110204.
[11] Performance optimization of scintillator neutron detectors for EMD in CSNS
Xiaojie Cai(蔡小杰), Qian Yu(于潜), Chang Huang(黄畅), Bin Tang(唐彬), Shihui Zhou(周诗慧), Xiaohu Wang(王小胡), Xiuping Yue(岳秀萍), and Zhijia Sun(孙志嘉). Chin. Phys. B, 2023, 32(11): 110701.
[12] Current sensor based on diamond nitrogen-vacancy color center
Zi-Yang Shi(史子阳), Wei Gao(高伟), Qi Wang(王启), Hao Guo(郭浩), Jun Tang(唐军), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Zong-Min Ma(马宗敏), and Jun Liu(刘俊). Chin. Phys. B, 2023, 32(7): 070704.
[13] Enhanced xylene sensing performance of hierarchical flower-like Co3O4 via In doping
Jing Zhang(张京), Jianyu Ling(凌剑宇), Kuikun Gu(谷魁坤), Georgiy G. Levchenko, and Xiao Liang(梁霄). Chin. Phys. B, 2023, 32(6): 068104.
[14] Construction of multi-walled carbon nanotubes/ZnSnO3 heterostructures for enhanced acetone sensing performance
Liyong Du(杜丽勇) and Heming Sun(孙鹤鸣). Chin. Phys. B, 2023, 32(5): 050701.
[15] Simultaneous measurements of refractive index and temperature based on a no-core fiber coated with Ag and PDMS films
Yuxin Li(李宇昕), Hailiang Chen(陈海良), Yingyue Zhang(张赢月), Qiang Chen(陈强), Biao Wu(武彪),Xiaoya Fan(樊晓亚), Yingchao Liu(刘英超), and Mingjian Ma(马明建). Chin. Phys. B, 2023, 32(5): 054209.
No Suggested Reading articles found!