Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 124203    DOI: 10.1088/1674-1056/adea5a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A tunable narrow-linewidth Raman laser based on high quality packaged microrod resonator

Cheng-Nian Liu(刘承念)1,2, Min Wang(王敏)3, Song-Yi Liu(刘嵩义)1,2, Bing Duan(段冰)1,2, Ying-Zhan Yan(严英占)4, Yu Wu(吴宇)5, Xiao-Chong Yu(俞骁翀)6,7,†, Bei-Bei Li(李贝贝)3,‡, and Da-Quan Yang(杨大全)1,2,§
1 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 Information Science Research Institute, China Electronics Technology Group Corporation, Beijing 100876, China;
5 The Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 610054, China;
6 Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China;
7 School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
Abstract  The enhancement of the microcavity quality factor contributes to fundamental linewidth reduction in microcavity lasers. This study demonstrates silica microrod resonators with quality factors approaching 109, fabricated by CO2 laser reflow technology. To improve practical applicability, low-loss package techniques were developed, yielding packaged resonators with optimized optical performance. Using this platform, stimulated Raman lasing was achieved with a pump mode Q-factor of 1.333×109, exhibiting a threshold of 0.765 mW. The laser output stability was characterized by a standard deviation of 0.671 mV over 45 minutes of operation, with corresponding Allan deviation analysis. At the maximum output power of 106.4 μW, the measured frequency noise spectral density reached 0.46 Hz2/Hz, corresponding to a linewidth of 2.89 Hz. Thermal tuning of the packaged module achieved a wavelength shift of 0.206 nm, with a temperature sensitivity of 8.92 pm/℃. This work establishes a new technical pathway for developing compact narrow-linewidth lasers, showing significant potential for medical diagnostics, optical communications, and defense applications.
Keywords:  Raman laser      resonator      nonlinear optics      optical elements and devices  
Received:  28 April 2025      Revised:  16 June 2025      Accepted manuscript online:  01 July 2025
PACS:  42.55.-f (Lasers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.65.-k (Nonlinear optics)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12474372, 12474429, 62222515, and 12174438), the National Key Research and Development Program of China (Grant Nos. 2023YFB2805600 and 2023YFB2806200), the Natural Science Foundation of Beijing Municipality (Grant No. Z210004), and the Fund from the State Key Laboratory of Information Photonics and Optical Communications (Grant No. IPOC2024ZR01).
Corresponding Authors:  Xiao-Chong Yu, Bei-Bei Li, Da-Quan Yang     E-mail:  ydq@bupt.edu.cn;libeibei@iphy.ac.cn;yuxc@bnu.edu.cn

Cite this article: 

Cheng-Nian Liu(刘承念), Min Wang(王敏), Song-Yi Liu(刘嵩义), Bing Duan(段冰), Ying-Zhan Yan(严英占), Yu Wu(吴宇), Xiao-Chong Yu(俞骁翀), Bei-Bei Li(李贝贝), and Da-Quan Yang(杨大全) A tunable narrow-linewidth Raman laser based on high quality packaged microrod resonator 2025 Chin. Phys. B 34 124203

[1] Hu J, Wang W, Xie Z Y, Liu C N, Li F and Yang D Q 2024 Photon. Res. 12 2573
[2] Yang Q, Li Y, Zou H, Mei J, Xu E M and Zhang Z X 2024 Chin. Phys. B 33 024206
[3] Lang X K, Jia P, Chen Y Y, Qin L, Liang L, Chen C, Wang Y B, Shan X N, Ning Y Q and Wang L J 2019 Sci. China Inf. Sci. 62 19203
[4] Duan B, Zhou H Y, Chen J H, Ma C H, Zhao X Y, Zheng X L, Wang C, Liu L and Yang D Q 2022 Photon. Res. 10 2343
[5] Chen S Y, Deng H Q, Zhang W R, Dai Y P, Wang T, Yu Q, Li C, Jiang M, Su R T and Wu J 2023 Chin. Phys. B 32 074203
[6] Duan B, Zhang X, Yu X C, Zhao Y X, Chen J H, Gao Y P, Wang C and Yang D Q 2025 Photon. Sens. 15 250310
[7] Schawlow A L and Townes C H 1958 Phys. Rev. 112 1940
[8] Wang J, Zhan T R, Huang G S, Chu P K and Mei Y F 2014 Laser Photon. Rev. 8 521
[9] Javerzac-Galy C, Kumar A, Schilling R D, Piro N, Khorasani S, Barbone M, Goykhman L, Khurgin J B, Ferrari A C and Kippenberg T J 2018 Nano Lett. 18 3138
[10] Reed J C, Zhu A Y, Zhu H, Yi F and Cubukcu E 2015 Nano Lett. 15 1967
[11] Grivas C, Li C Y, Andreakou P, Wang P F, Ding M, Brambilla G, Manna L and Lagoudakis P 2013 Nat. Commun. 4 2376
[12] Cai M, Painter O, Vahala K J and Sercel P C 2000 Opt. Lett. 25 1430
[13] Zhu S, Shi L, Xiao B W, Zhang X L and Fan X D 2018 ACS Photon. 5 3794
[14] Zhu S, Xiao B W, Jiang B, Shi L and Zhang X L 2019 Nanophotonics 8 931
[15] Tian J Y and Lin G P 2023 J. Lightwave Technol. 42 2118
[16] Spillane S M, Kippenberg T J and Vahala K J 2002 Nature 415 621
[17] Liu K K and Blumenthal D J 2024 Conference on Lasers and ElectroOptics (CLEO), May 5–10, 2024, Charlotte, USA, pp. 1–2
[18] Gundavarapu S, Brodnik G M, Puckett M, Huffman T, Bose D, Behunin R, Wu J F, Qiu T Q, Pinho C, Chauhan N, Nohava J, Rakich P T, Nelson K D, Salit M and Blumenthal D J 2019 Nat. Photon. 13 60
[19] Liu K K, Wang J W, Chauhan N, Harrington M W, Nelson K D and Blumenthal D J 2023 Opt. Lett. 49 45
[20] Qin Y C, Ding S L, Zhang M H, Wang Y N, Shi Q, Li Z X, Wen J M, Xiao M and Jiang X S 2022 Opt. Lett. 47 1638
[21] Yuan Z Q, Wang H M, Wu L, Gao M D and Vahala K J 2020 Optica 7 1150
[22] Li J, Lee H, Chen T and Vahala K J 2012 Opt. Express 20 20170
[23] Wang M, Liu C N, Zhou X, Li J C, Wang Z, Yang D Q, Yang Q F and Li B B 2025 ACS Photon. 12 2318
[24] Lu T, Yang L, Carmon T and Min B 2011 IEEE J. Quantum Electron. 47 320
[25] Liu K W, Yao S Y, Ding Y L, Wang Z H, Guo Y N, Yan J C, Wang J X, Yang C X and Bao C Y 2022 Opt. Lett. 47 4295
[26] Roos P A, Murphy S K, Meng L S, Carlsten J L, Ralph T C, White A G and Brasseur J K 2003 Phys. Rev. A 68 013802
[27] Del’Haye P, Diddams S A and Papp S B 2013 Appl. Phys. Lett. 102 221119
[28] Yang D Q, Guo Y Y, Chen W, Wu Y R, Zhai K P and Wang X 2022 J. Lightwave Technol. 41 1768
[29] Chen Y, Zhou Z H, Zou C L, Shen Z, Guo G C and Dong C H 2017 Opt. Express 25 16879
[30] Jager J B, Calvo V, Delamadeleine E, Hadji E, Noe P, Ricart T, Bucci D and Morand A 2011 Appl. Phys. Lett. 99 181123
[31] Wang H, Duan B, Wang K, Wu X Y, Gao Y P, Lu B, Yang D Q and Wang C 2023 Nanophotonics 12 3757
[32] Cui M B, Huang J G and Yang X L 2021 Laser Optoelectron. Prog. 58 0900005
[33] Yuan Z Q, Wang H M, Liu P, Li B H, Shen B Q, Gao M D, Chang L, Jin W, Feshali A, Paniccia M, Bowers J and Vahala K J 2022 Opt. Express 30 25147
[34] Chen J Q, Chen C, Sun J J, Zhang J W, Liu Z H, Qin L, Ning Y Q and Wang L J 2024 Sensors 24 3656
[35] Exter M P V, Kuppens S J M and Woerdman J P 1992 IEEE J. Quantum Electron. 28 580
[36] Domenico G D, Schilt S and Thomann P 2010 Appl. Opt. 49 4801
[37] Wu Y R, Duan B, Song J E, Liu X, Yu X C, Wang C and Yang D Q 2023 Opt. Express 31 18851
[38] Song R, Zhang X, Feng S, Liu S Y, Duan B and Yang D Q 2024 Results Phys. 2 107806
[39] Gao Y, Liu T, Wang S Y and Guo H R 2022 Infrared Laser Eng. 51 20220294 (in Chinese)
[40] Shimizu S, Takayuki K, Akira K, Takushi K, Masanori N, Koji E, Takahiro K, Masashi A, Takeshi U, Yutaka M, Tomoyuki K, Yu T and Takeshi H 2024 J. Lightwave Technol. 42 1347
[41] Xu F, Qiao Y, Zhou J, Guo M Q and Tian H P 2017 Opt. Fiber Technol. 34 36
[42] Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transf. 277 107949
[43] Hodgkinson J and Tatam R P 2012 Meas. Sci. Technol. 24 012004
[1] Euler-modified pulley-type microring on lithium niobate platform
Wen-Hui Song(宋文慧), Dong-Jie Guo(郭东洁), Ran Yang(杨然), Jia-Chen Duan(端家晨), Zi-Shuo Gu(顾子硕), Ji Tang(汤济), Zhilin Ye(叶志霖), Xiao-Hui Tian(田晓慧), Kunpeng Jia(贾琨鹏), Zhong Yan(严仲), Zhijun Yin(尹志军), Yan-Xiao Gong(龚彦晓), Zhenda Xie(谢臻达), Zhenlin Wang(王振林), and Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2025, 34(8): 084205.
[2] Real-time observations of the transition dynamics between multiple nonlinear states in a coherently driven Kerr fiber-loop resonator
Yayu Cao(曹亚昱), Heng Dong(董恒), and Xiankun Yao(姚献坤). Chin. Phys. B, 2025, 34(7): 074206.
[3] Reconfigurable microring resonators for multipurpose quantum light sources
Yuxing Du(杜昱星), Yingwen Liu(刘英文), Chao Wu(吴超), Pingyu Zhu(朱枰谕), Chang Zhao(赵畅), Miaomiao Yu(余苗苗), Yan Wang(王焱), Kaikai Zhang(张凯凯), and Ping Xu(徐平). Chin. Phys. B, 2025, 34(7): 074207.
[4] Controlled propagation and particle manipulation of off-axis-rotating elliptical Gaussian beams in strong nonlocal media
Rong-Quan Chen(陈荣泉), Rui-Lin Xiao(肖瑞林), Wei Wang(王伟), Xi-Xi Chu(储茜茜), Yu-Qing Song(宋雨晴), Xu-Dong Hu(胡旭东), and Ming Chen(陈明). Chin. Phys. B, 2025, 34(3): 034205.
[5] Quantum manipulation of asymmetric Einstein-Podolsky-Rosen steering in controllable dynamical Casimir arrays
Ruinian Li(李瑞年), Yumei Long(龙玉梅), and Xue Zhang(张雪). Chin. Phys. B, 2025, 34(2): 020307.
[6] Design of a high sensitivity and wide range angular rate sensor based on exceptional surface
Xinsheng Ding(丁鑫圣), Wenyao Liu(刘文耀), Shixian Wang(王师贤), Yu Tao(陶煜), Yanru Zhou(周彦汝), Yu Bai(白禹), Lai Liu(刘来), Enbo Xing(邢恩博), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2024, 33(8): 084204.
[7] Frequency-tunable single-photon router based on a microresonator containing a driven three-level emitter
Jin-Song Huang(黄劲松), Jing-Lan Hu(胡菁兰), Yan-Ling Li(李艳玲), and Zhong-Hui Xu(徐中辉). Chin. Phys. B, 2024, 33(6): 064202.
[8] Tunable superconducting resonators via on-chip control of local magnetic field
Chen-Guang Wang(王晨光), Wen-Cheng Yue(岳文诚), Xuecou Tu(涂学凑), Tianyuan Chi(迟天圆), Tingting Guo(郭婷婷), Yang-Yang Lyu(吕阳阳), Sining Dong(董思宁), Chunhai Cao(曹春海), Labao Zhang(张蜡宝), Xiaoqing Jia(贾小氢), Guozhu Sun(孙国柱), Lin Kang(康琳), Jian Chen(陈健), Yong-Lei Wang(王永磊), Huabing Wang(王华兵), and Peiheng Wu(吴培亨). Chin. Phys. B, 2024, 33(5): 058402.
[9] Plasmon-induced nonlinear response on gold nanoclusters
Yuhui Song(宋玉慧), Yifei Cao(曹逸飞), Sichen Huang(黄思晨), Kaichao Li(李凯超), Ruhai Du(杜如海), Lei Yan(严蕾), Zhengkun Fu(付正坤), and Zhenglong Zhang(张正龙). Chin. Phys. B, 2024, 33(4): 044204.
[10] Chiral bound states in a staggered array of coupled resonators
Wu-Lin Jin(金伍林), Jing Li(李静), Jing Lu(卢竞), Zhi-Rui Gong(龚志瑞), and Lan Zhou(周兰). Chin. Phys. B, 2024, 33(2): 020302.
[11] Disorder effects in NbTiN superconducting resonators
Wei-Tao Lyu(吕伟涛), Qiang Zhi(支强), Jie Hu(胡洁), Jing Li(李婧), and Sheng-Cai Shi(史生才). Chin. Phys. B, 2024, 33(2): 027401.
[12] Gigahertz frequency hopping in an optical phase-locked loop for Raman lasers
Dekai Mao(毛德凯), Hongmian Shui(税鸿冕), Guoling Yin(殷国玲), Peng Peng(彭鹏), Chunwei Wang(王春唯), and Xiaoji Zhou(周小计). Chin. Phys. B, 2024, 33(2): 024209.
[13] Determining the tilt of the Raman laser beam using an optical method for atom gravimeters
Hua-Qing Luo(骆华清), Yao-Yao Xu(徐耀耀), Jia-Feng Cui(崔嘉丰), Xiao-Bing Deng(邓小兵), Min-Kang Zhou(周敏康), Xiao-Chun Duan(段小春), and Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2024, 33(12): 123701.
[14] Using harmonic beam combining to generate pulse-burst in nonlinear optical laser
Yuan-Zhai Xu(许元斋), Zhen-Ling Li(李珍玲), Ao-Nan Zhang(张奥楠), Ke Liu(刘可), Jing-Jing Zhang(张晶晶), Xiao-Jun Wang(王小军), Qin-Jun Peng(彭钦军), and Zu-Yan Xu(许祖彦). Chin. Phys. B, 2024, 33(1): 014206.
[15] Design and simulation of a silicon-based hybrid integrated optical gyroscope system
Dao-Xin Sun(孙道鑫), Dong-Liang Zhang(张东亮), Li-Dan Lu(鹿利单), Tao Xu(徐涛),Xian-Tong Zheng(郑显通), Zhe-Hai Zhou(周哲海), and Lian-Qing Zhu(祝连庆). Chin. Phys. B, 2023, 32(4): 044212.
No Suggested Reading articles found!