Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 124203    DOI: 10.1088/1674-1056/adea5a
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A tunable narrow-linewidth Raman laser based on high quality packaged microrod resonator

Cheng-Nian Liu(刘承念)1,2, Min Wang(王敏)3, Song-Yi Liu(刘嵩义)1,2, Bing Duan(段冰)1,2, Ying-Zhan Yan(严英占)4, Yu Wu(吴宇)5, Xiao-Chong Yu(俞骁翀)6,7,†, Bei-Bei Li(李贝贝)3,‡, and Da-Quan Yang(杨大全)1,2,§
1 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
4 Information Science Research Institute, China Electronics Technology Group Corporation, Beijing 100876, China;
5 The Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 610054, China;
6 Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China;
7 School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China
Abstract  The enhancement of the microcavity quality factor contributes to fundamental linewidth reduction in microcavity lasers. This study demonstrates silica microrod resonators with quality factors approaching 109, fabricated by CO2 laser reflow technology. To improve practical applicability, low-loss package techniques were developed, yielding packaged resonators with optimized optical performance. Using this platform, stimulated Raman lasing was achieved with a pump mode Q-factor of 1.333×109, exhibiting a threshold of 0.765 mW. The laser output stability was characterized by a standard deviation of 0.671 mV over 45 minutes of operation, with corresponding Allan deviation analysis. At the maximum output power of 106.4 μW, the measured frequency noise spectral density reached 0.46 Hz2/Hz, corresponding to a linewidth of 2.89 Hz. Thermal tuning of the packaged module achieved a wavelength shift of 0.206 nm, with a temperature sensitivity of 8.92 pm/℃. This work establishes a new technical pathway for developing compact narrow-linewidth lasers, showing significant potential for medical diagnostics, optical communications, and defense applications.
Keywords:  Raman laser      resonator      nonlinear optics      optical elements and devices  
Received:  28 April 2025      Revised:  16 June 2025      Accepted manuscript online:  01 July 2025
PACS:  42.55.-f (Lasers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.65.-k (Nonlinear optics)  
  42.79.-e (Optical elements, devices, and systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12474372, 12474429, 62222515, and 12174438), the National Key Research and Development Program of China (Grant Nos. 2023YFB2805600 and 2023YFB2806200), the Natural Science Foundation of Beijing Municipality (Grant No. Z210004), and the Fund from the State Key Laboratory of Information Photonics and Optical Communications (Grant No. IPOC2024ZR01).
Corresponding Authors:  Xiao-Chong Yu, Bei-Bei Li, Da-Quan Yang     E-mail:  ydq@bupt.edu.cn;libeibei@iphy.ac.cn;yuxc@bnu.edu.cn

Cite this article: 

Cheng-Nian Liu(刘承念), Min Wang(王敏), Song-Yi Liu(刘嵩义), Bing Duan(段冰), Ying-Zhan Yan(严英占), Yu Wu(吴宇), Xiao-Chong Yu(俞骁翀), Bei-Bei Li(李贝贝), and Da-Quan Yang(杨大全) A tunable narrow-linewidth Raman laser based on high quality packaged microrod resonator 2025 Chin. Phys. B 34 124203

[1] Hu J, Wang W, Xie Z Y, Liu C N, Li F and Yang D Q 2024 Photon. Res. 12 2573
[2] Yang Q, Li Y, Zou H, Mei J, Xu E M and Zhang Z X 2024 Chin. Phys. B 33 024206
[3] Lang X K, Jia P, Chen Y Y, Qin L, Liang L, Chen C, Wang Y B, Shan X N, Ning Y Q and Wang L J 2019 Sci. China Inf. Sci. 62 19203
[4] Duan B, Zhou H Y, Chen J H, Ma C H, Zhao X Y, Zheng X L, Wang C, Liu L and Yang D Q 2022 Photon. Res. 10 2343
[5] Chen S Y, Deng H Q, Zhang W R, Dai Y P, Wang T, Yu Q, Li C, Jiang M, Su R T and Wu J 2023 Chin. Phys. B 32 074203
[6] Duan B, Zhang X, Yu X C, Zhao Y X, Chen J H, Gao Y P, Wang C and Yang D Q 2025 Photon. Sens. 15 250310
[7] Schawlow A L and Townes C H 1958 Phys. Rev. 112 1940
[8] Wang J, Zhan T R, Huang G S, Chu P K and Mei Y F 2014 Laser Photon. Rev. 8 521
[9] Javerzac-Galy C, Kumar A, Schilling R D, Piro N, Khorasani S, Barbone M, Goykhman L, Khurgin J B, Ferrari A C and Kippenberg T J 2018 Nano Lett. 18 3138
[10] Reed J C, Zhu A Y, Zhu H, Yi F and Cubukcu E 2015 Nano Lett. 15 1967
[11] Grivas C, Li C Y, Andreakou P, Wang P F, Ding M, Brambilla G, Manna L and Lagoudakis P 2013 Nat. Commun. 4 2376
[12] Cai M, Painter O, Vahala K J and Sercel P C 2000 Opt. Lett. 25 1430
[13] Zhu S, Shi L, Xiao B W, Zhang X L and Fan X D 2018 ACS Photon. 5 3794
[14] Zhu S, Xiao B W, Jiang B, Shi L and Zhang X L 2019 Nanophotonics 8 931
[15] Tian J Y and Lin G P 2023 J. Lightwave Technol. 42 2118
[16] Spillane S M, Kippenberg T J and Vahala K J 2002 Nature 415 621
[17] Liu K K and Blumenthal D J 2024 Conference on Lasers and ElectroOptics (CLEO), May 5–10, 2024, Charlotte, USA, pp. 1–2
[18] Gundavarapu S, Brodnik G M, Puckett M, Huffman T, Bose D, Behunin R, Wu J F, Qiu T Q, Pinho C, Chauhan N, Nohava J, Rakich P T, Nelson K D, Salit M and Blumenthal D J 2019 Nat. Photon. 13 60
[19] Liu K K, Wang J W, Chauhan N, Harrington M W, Nelson K D and Blumenthal D J 2023 Opt. Lett. 49 45
[20] Qin Y C, Ding S L, Zhang M H, Wang Y N, Shi Q, Li Z X, Wen J M, Xiao M and Jiang X S 2022 Opt. Lett. 47 1638
[21] Yuan Z Q, Wang H M, Wu L, Gao M D and Vahala K J 2020 Optica 7 1150
[22] Li J, Lee H, Chen T and Vahala K J 2012 Opt. Express 20 20170
[23] Wang M, Liu C N, Zhou X, Li J C, Wang Z, Yang D Q, Yang Q F and Li B B 2025 ACS Photon. 12 2318
[24] Lu T, Yang L, Carmon T and Min B 2011 IEEE J. Quantum Electron. 47 320
[25] Liu K W, Yao S Y, Ding Y L, Wang Z H, Guo Y N, Yan J C, Wang J X, Yang C X and Bao C Y 2022 Opt. Lett. 47 4295
[26] Roos P A, Murphy S K, Meng L S, Carlsten J L, Ralph T C, White A G and Brasseur J K 2003 Phys. Rev. A 68 013802
[27] Del’Haye P, Diddams S A and Papp S B 2013 Appl. Phys. Lett. 102 221119
[28] Yang D Q, Guo Y Y, Chen W, Wu Y R, Zhai K P and Wang X 2022 J. Lightwave Technol. 41 1768
[29] Chen Y, Zhou Z H, Zou C L, Shen Z, Guo G C and Dong C H 2017 Opt. Express 25 16879
[30] Jager J B, Calvo V, Delamadeleine E, Hadji E, Noe P, Ricart T, Bucci D and Morand A 2011 Appl. Phys. Lett. 99 181123
[31] Wang H, Duan B, Wang K, Wu X Y, Gao Y P, Lu B, Yang D Q and Wang C 2023 Nanophotonics 12 3757
[32] Cui M B, Huang J G and Yang X L 2021 Laser Optoelectron. Prog. 58 0900005
[33] Yuan Z Q, Wang H M, Liu P, Li B H, Shen B Q, Gao M D, Chang L, Jin W, Feshali A, Paniccia M, Bowers J and Vahala K J 2022 Opt. Express 30 25147
[34] Chen J Q, Chen C, Sun J J, Zhang J W, Liu Z H, Qin L, Ning Y Q and Wang L J 2024 Sensors 24 3656
[35] Exter M P V, Kuppens S J M and Woerdman J P 1992 IEEE J. Quantum Electron. 28 580
[36] Domenico G D, Schilt S and Thomann P 2010 Appl. Opt. 49 4801
[37] Wu Y R, Duan B, Song J E, Liu X, Yu X C, Wang C and Yang D Q 2023 Opt. Express 31 18851
[38] Song R, Zhang X, Feng S, Liu S Y, Duan B and Yang D Q 2024 Results Phys. 2 107806
[39] Gao Y, Liu T, Wang S Y and Guo H R 2022 Infrared Laser Eng. 51 20220294 (in Chinese)
[40] Shimizu S, Takayuki K, Akira K, Takushi K, Masanori N, Koji E, Takahiro K, Masashi A, Takeshi U, Yutaka M, Tomoyuki K, Yu T and Takeshi H 2024 J. Lightwave Technol. 42 1347
[41] Xu F, Qiao Y, Zhou J, Guo M Q and Tian H P 2017 Opt. Fiber Technol. 34 36
[42] Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transf. 277 107949
[43] Hodgkinson J and Tatam R P 2012 Meas. Sci. Technol. 24 012004
[1] Exciton dynamics and random lasing in surface-passivated CdSe/CdSeS core/crown nanoplatelets
Huan Liu(刘欢), Puning Wang(王谱宁), and Rui Chen(陈锐). Chin. Phys. B, 2025, 34(9): 094201.
[2] Theoretical and computational feasibility of femtosecond laser multifilament transverse structures reconstruction via circular-scanning-based photoacoustic tomography
Qingwei Zeng(曾庆伟), Lei Liu(刘磊), Shuai Hu(胡帅), and Shulei Li(李书磊). Chin. Phys. B, 2025, 34(9): 094209.
[3] Impact of free electron laser coherence on imaging quality
Shuang Wei(魏爽), Shuang Gong(龚爽), Yang Bu(步扬), and Zi-Jian Song(宋子健). Chin. Phys. B, 2025, 34(5): 054201.
[4] High peak power mini-array quantum cascade lasers operating in pulsed mode
Yuhang Zhang(章宇航), Yupei Wang(王渝沛), Xiaoyue Luo(罗晓玥), Chenhao Qian(钱晨灏), Yang Cheng(程洋), Wu Zhao(赵武), Fangyuan Sun(孙方圆), Jun Wang(王俊), and Zheng-Ming Sun(孙正明). Chin. Phys. B, 2025, 34(1): 014204.
[5] Continuous wave and active Q-switched operation of Watt-level LED-pumped two-rod Nd,Ce:YAG laser
Jian-Ping Shen(沈建平), Peng Lu(芦鹏), Shao-Cong Xu(徐少聪), Rong-Rong Jiang(江容容), Yang Chen(陈阳), Liang Chen(陈亮), and Feng-Yang Xing(邢凤阳). Chin. Phys. B, 2024, 33(7): 074207.
[6] Laser parameters affecting the asymmetric radiation of the electron in tightly focused intense laser pulses
Xing-Yu Li(李星宇), Wan-Yu Xia(夏婉瑜), You-Wei Tian(田友伟), and Shan-Ling Ren(任山令). Chin. Phys. B, 2023, 32(12): 124205.
[7] High-power xenon lamp-pumped Er:YAP pulse laser operated in free-running and acousto-optical Q-switching modes
Cong Quan(权聪), Dunlu Sun(孙敦陆), Huili Zhang(张会丽), Jianqiao Luo(罗建乔), Zhiyuan Han(韩志远), Yang Qiao(乔阳), Yuwei Chen(陈玙威), Zhentao Wang(王镇涛), Maojie Cheng(程毛杰), and Qingli Zhang(张庆礼). Chin. Phys. B, 2023, 32(11): 114207.
[8] Energy conversion materials for the space solar power station
Xiao-Na Ren(任晓娜), Chang-Chun Ge(葛昌纯), Zhi-Pei Chen(陈志培), Irfan(伊凡), Yongguang Tu(涂用广), Ying-Chun Zhang(张迎春), Li Wang(王立), Zi-Li Liu(刘自立), and Yi-Qiu Guan(关怡秋). Chin. Phys. B, 2023, 32(7): 078802.
[9] Single-frequency linearly polarized Q-switched fiber laser based on Nb2GeTe4 saturable absorber
Si-Yu Chen(陈思雨), Hai-Qin Deng(邓海芹), Wan-Ru Zhang(张万儒), Yong-Ping Dai(戴永平), Tao Wang(王涛), Qiang Yu(俞强), Can Li(李灿), Man Jiang(姜曼), Rong-Tao Su(粟荣涛), Jian Wu(吴坚), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(7): 074203.
[10] A 54-fs diode-pumped Kerr-lens mode-locked Yb:LuYSiO5laser
Yang Yu(于洋), Yuehang Chen(陈月航), Wenlong Tian(田文龙), Li Zheng(郑立), Geyang Wang(王阁阳), Chuan Bai(白川), Xuan Tian(田轩), Haijing Mai(麦海静), Yulong Su(苏玉龙), Jiangfeng Zhu(朱江峰), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(6): 064204.
[11] Optically pumped wavelength-tunable lasing from a GaN beam cavity with an integrated Joule heater pivoted on Si
Feifei Qin(秦飞飞), Yang Sun(孙阳), Ying Yang(杨颖), Xin Li(李欣), Xu Wang(王旭), Junfeng Lu(卢俊峰), Yongjin Wang(王永进), and Gangyi Zhu(朱刚毅). Chin. Phys. B, 2023, 32(5): 054210.
[12] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[13] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[14] Asymmetrical spiral spectra and orbital angular momentum density of non-uniformly polarized vortex beams in uniaxial crystals
Ling-Yun Shu(舒凌云), Ke Cheng(程科), Sai Liao(廖赛), Meng-Ting Liang(梁梦婷), and Ceng-Hao Yang(杨嶒浩). Chin. Phys. B, 2023, 32(2): 024211.
[15] Watt-level, green-pumped optical parametric oscillator based on periodically poled potassium titanyl phosphate with high extraction efficiency
Hang-Hang Yu(俞航航), Zhi-Tao Zhang(张志韬), and Hong-Wen Xuan(玄洪文). Chin. Phys. B, 2022, 31(12): 124203.
No Suggested Reading articles found!