| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A tunable narrow-linewidth Raman laser based on high quality packaged microrod resonator |
| Cheng-Nian Liu(刘承念)1,2, Min Wang(王敏)3, Song-Yi Liu(刘嵩义)1,2, Bing Duan(段冰)1,2, Ying-Zhan Yan(严英占)4, Yu Wu(吴宇)5, Xiao-Chong Yu(俞骁翀)6,7,†, Bei-Bei Li(李贝贝)3,‡, and Da-Quan Yang(杨大全)1,2,§ |
1 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2 School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; 3 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 4 Information Science Research Institute, China Electronics Technology Group Corporation, Beijing 100876, China; 5 The Key Laboratory of Optical Fiber Sensing and Communications (Education Ministry of China), University of Electronic Science and Technology of China, Chengdu 610054, China; 6 Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China; 7 School of Physics and Astronomy, Applied Optics Beijing Area Major Laboratory, Key Laboratory of Multiscale Spin Physics, Ministry of Education, Beijing Normal University, Beijing 100875, China |
|
|
|
|
Abstract The enhancement of the microcavity quality factor contributes to fundamental linewidth reduction in microcavity lasers. This study demonstrates silica microrod resonators with quality factors approaching 109, fabricated by CO2 laser reflow technology. To improve practical applicability, low-loss package techniques were developed, yielding packaged resonators with optimized optical performance. Using this platform, stimulated Raman lasing was achieved with a pump mode Q-factor of 1.333×109, exhibiting a threshold of 0.765 mW. The laser output stability was characterized by a standard deviation of 0.671 mV over 45 minutes of operation, with corresponding Allan deviation analysis. At the maximum output power of 106.4 μW, the measured frequency noise spectral density reached 0.46 Hz2/Hz, corresponding to a linewidth of 2.89 Hz. Thermal tuning of the packaged module achieved a wavelength shift of 0.206 nm, with a temperature sensitivity of 8.92 pm/℃. This work establishes a new technical pathway for developing compact narrow-linewidth lasers, showing significant potential for medical diagnostics, optical communications, and defense applications.
|
Received: 28 April 2025
Revised: 16 June 2025
Accepted manuscript online: 01 July 2025
|
|
PACS:
|
42.55.-f
|
(Lasers)
|
| |
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
| |
42.65.-k
|
(Nonlinear optics)
|
| |
42.79.-e
|
(Optical elements, devices, and systems)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12474372, 12474429, 62222515, and 12174438), the National Key Research and Development Program of China (Grant Nos. 2023YFB2805600 and 2023YFB2806200), the Natural Science Foundation of Beijing Municipality (Grant No. Z210004), and the Fund from the State Key Laboratory of Information Photonics and Optical Communications (Grant No. IPOC2024ZR01). |
Corresponding Authors:
Xiao-Chong Yu, Bei-Bei Li, Da-Quan Yang
E-mail: ydq@bupt.edu.cn;libeibei@iphy.ac.cn;yuxc@bnu.edu.cn
|
Cite this article:
Cheng-Nian Liu(刘承念), Min Wang(王敏), Song-Yi Liu(刘嵩义), Bing Duan(段冰), Ying-Zhan Yan(严英占), Yu Wu(吴宇), Xiao-Chong Yu(俞骁翀), Bei-Bei Li(李贝贝), and Da-Quan Yang(杨大全) A tunable narrow-linewidth Raman laser based on high quality packaged microrod resonator 2025 Chin. Phys. B 34 124203
|
[1] Hu J, Wang W, Xie Z Y, Liu C N, Li F and Yang D Q 2024 Photon. Res. 12 2573 [2] Yang Q, Li Y, Zou H, Mei J, Xu E M and Zhang Z X 2024 Chin. Phys. B 33 024206 [3] Lang X K, Jia P, Chen Y Y, Qin L, Liang L, Chen C, Wang Y B, Shan X N, Ning Y Q and Wang L J 2019 Sci. China Inf. Sci. 62 19203 [4] Duan B, Zhou H Y, Chen J H, Ma C H, Zhao X Y, Zheng X L, Wang C, Liu L and Yang D Q 2022 Photon. Res. 10 2343 [5] Chen S Y, Deng H Q, Zhang W R, Dai Y P, Wang T, Yu Q, Li C, Jiang M, Su R T and Wu J 2023 Chin. Phys. B 32 074203 [6] Duan B, Zhang X, Yu X C, Zhao Y X, Chen J H, Gao Y P, Wang C and Yang D Q 2025 Photon. Sens. 15 250310 [7] Schawlow A L and Townes C H 1958 Phys. Rev. 112 1940 [8] Wang J, Zhan T R, Huang G S, Chu P K and Mei Y F 2014 Laser Photon. Rev. 8 521 [9] Javerzac-Galy C, Kumar A, Schilling R D, Piro N, Khorasani S, Barbone M, Goykhman L, Khurgin J B, Ferrari A C and Kippenberg T J 2018 Nano Lett. 18 3138 [10] Reed J C, Zhu A Y, Zhu H, Yi F and Cubukcu E 2015 Nano Lett. 15 1967 [11] Grivas C, Li C Y, Andreakou P, Wang P F, Ding M, Brambilla G, Manna L and Lagoudakis P 2013 Nat. Commun. 4 2376 [12] Cai M, Painter O, Vahala K J and Sercel P C 2000 Opt. Lett. 25 1430 [13] Zhu S, Shi L, Xiao B W, Zhang X L and Fan X D 2018 ACS Photon. 5 3794 [14] Zhu S, Xiao B W, Jiang B, Shi L and Zhang X L 2019 Nanophotonics 8 931 [15] Tian J Y and Lin G P 2023 J. Lightwave Technol. 42 2118 [16] Spillane S M, Kippenberg T J and Vahala K J 2002 Nature 415 621 [17] Liu K K and Blumenthal D J 2024 Conference on Lasers and ElectroOptics (CLEO), May 5–10, 2024, Charlotte, USA, pp. 1–2 [18] Gundavarapu S, Brodnik G M, Puckett M, Huffman T, Bose D, Behunin R, Wu J F, Qiu T Q, Pinho C, Chauhan N, Nohava J, Rakich P T, Nelson K D, Salit M and Blumenthal D J 2019 Nat. Photon. 13 60 [19] Liu K K, Wang J W, Chauhan N, Harrington M W, Nelson K D and Blumenthal D J 2023 Opt. Lett. 49 45 [20] Qin Y C, Ding S L, Zhang M H, Wang Y N, Shi Q, Li Z X, Wen J M, Xiao M and Jiang X S 2022 Opt. Lett. 47 1638 [21] Yuan Z Q, Wang H M, Wu L, Gao M D and Vahala K J 2020 Optica 7 1150 [22] Li J, Lee H, Chen T and Vahala K J 2012 Opt. Express 20 20170 [23] Wang M, Liu C N, Zhou X, Li J C, Wang Z, Yang D Q, Yang Q F and Li B B 2025 ACS Photon. 12 2318 [24] Lu T, Yang L, Carmon T and Min B 2011 IEEE J. Quantum Electron. 47 320 [25] Liu K W, Yao S Y, Ding Y L, Wang Z H, Guo Y N, Yan J C, Wang J X, Yang C X and Bao C Y 2022 Opt. Lett. 47 4295 [26] Roos P A, Murphy S K, Meng L S, Carlsten J L, Ralph T C, White A G and Brasseur J K 2003 Phys. Rev. A 68 013802 [27] Del’Haye P, Diddams S A and Papp S B 2013 Appl. Phys. Lett. 102 221119 [28] Yang D Q, Guo Y Y, Chen W, Wu Y R, Zhai K P and Wang X 2022 J. Lightwave Technol. 41 1768 [29] Chen Y, Zhou Z H, Zou C L, Shen Z, Guo G C and Dong C H 2017 Opt. Express 25 16879 [30] Jager J B, Calvo V, Delamadeleine E, Hadji E, Noe P, Ricart T, Bucci D and Morand A 2011 Appl. Phys. Lett. 99 181123 [31] Wang H, Duan B, Wang K, Wu X Y, Gao Y P, Lu B, Yang D Q and Wang C 2023 Nanophotonics 12 3757 [32] Cui M B, Huang J G and Yang X L 2021 Laser Optoelectron. Prog. 58 0900005 [33] Yuan Z Q, Wang H M, Liu P, Li B H, Shen B Q, Gao M D, Chang L, Jin W, Feshali A, Paniccia M, Bowers J and Vahala K J 2022 Opt. Express 30 25147 [34] Chen J Q, Chen C, Sun J J, Zhang J W, Liu Z H, Qin L, Ning Y Q and Wang L J 2024 Sensors 24 3656 [35] Exter M P V, Kuppens S J M and Woerdman J P 1992 IEEE J. Quantum Electron. 28 580 [36] Domenico G D, Schilt S and Thomann P 2010 Appl. Opt. 49 4801 [37] Wu Y R, Duan B, Song J E, Liu X, Yu X C, Wang C and Yang D Q 2023 Opt. Express 31 18851 [38] Song R, Zhang X, Feng S, Liu S Y, Duan B and Yang D Q 2024 Results Phys. 2 107806 [39] Gao Y, Liu T, Wang S Y and Guo H R 2022 Infrared Laser Eng. 51 20220294 (in Chinese) [40] Shimizu S, Takayuki K, Akira K, Takushi K, Masanori N, Koji E, Takahiro K, Masashi A, Takeshi U, Yutaka M, Tomoyuki K, Yu T and Takeshi H 2024 J. Lightwave Technol. 42 1347 [41] Xu F, Qiao Y, Zhou J, Guo M Q and Tian H P 2017 Opt. Fiber Technol. 34 36 [42] Gordon I E, Rothman L S, Hargreaves R J, et al. 2022 J. Quant. Spectrosc. Radiat. Transf. 277 107949 [43] Hodgkinson J and Tatam R P 2012 Meas. Sci. Technol. 24 012004 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|