| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
|
|
|
Super-resolving refractive index measurements with even coherent-state sources and parity detection |
| Qiang Wang(王强), Xiaohao Yang(杨晓豪)†, Fu Song(宋甫), and Lili Hao(郝利丽) |
| School of Physics and Electronic Engineering, Northeast Petroleum University, Daqing 163318, China |
|
|
|
|
Abstract High-precision refractive index measurement has become a research hotspot in recent years. However, traditional refractive index measurement often adopts intensity detection, whose performance is restricted by the classical detection limit and is thus hard to improve further. In order to break through this limitation, we propose a quantum-enhanced refractive index sensing scheme utilizing even-coherent-state sources in combination with parity detection. In this paper, we analyze the detection performance of the proposed system. Due to the inevitable photon loss in practical applications, the effects of photon loss on resolution and sensitivity are also investigated. Numerical results show that the resolution of the proposed strategy breaks through the Rayleigh limit and achieves super-resolving refractive index measurement. Relative to existing coherent-state schemes, our strategy leads to a twofold resolution improvement. Furthermore, the physical origins of the super-resolution are analyzed.
|
Received: 18 March 2025
Revised: 06 June 2025
Accepted manuscript online: 27 June 2025
|
|
PACS:
|
42.50.-p
|
(Quantum optics)
|
| |
42.50.St
|
(Nonclassical interferometry, subwavelength lithography)
|
|
Corresponding Authors:
Xiaohao Yang
E-mail: yangxiaohao0508@163.com
|
| About author: 2025-124202-250449.pdf |
Cite this article:
Qiang Wang(王强), Xiaohao Yang(杨晓豪), Fu Song(宋甫), and Lili Hao(郝利丽) Super-resolving refractive index measurements with even coherent-state sources and parity detection 2025 Chin. Phys. B 34 124202
|
[1] Hu Y, Lv J and Hao Q 2021 Sensors 21 2421 [2] Liu X, Qiaohan W and Wang D 2022 Optik 254 168642 [3] Singh S, Sharma A K, Lohia P, Dwivedi D, Kumar V and Singh P K 2023 Phys. Scr. 98 025813 [4] Rahad R, Rakib A, HaqueMA, Sharar S S and Sagor R H 2023 Results Phys. 49 106478 [5] Tuaimah A M, Taher H J, Tahhan S R, Al-Zahrani F A and Ahmed K 2023 Plasmonics 18 2393 [6] Liu Y, ZhangW, Tong Z,Wang X, Liu D,Wang M and Yu H 2024 Opt. Mater. 148 114933 [7] Wu Y, Liu B, Wang J, Wu J, Mao Y, Ren J, Zhao L, Sun T, Nan T and Han Y 2021 Optik 226 165495 [8] Upadhyay C and Dhawan D 2023 Opt. Quantum Electron. 55 271 [9] Guo X, Li C and Cong J 2022 Optik 271 170030 [10] Li K, Guo Y, Li S, Yin Z, Chen Q, Meng X, Gao Z and Bai G 2023 Plasmonics 18 1093 [11] Chen P, Shu X and Cao H 2017 IEEE Photonics J. 9 1 [12] Li X, Warren-Smith S C, Xie L, Ebendorff-Heidepriem H and Nguyen L V 2020 IEEE Sens. J. 20 6408 [13] Zheng S, Rao W, Cai X, Wu M, Xie T and Wang H 2024 IEEE Photonics J. 24 2799 [14] Wang J, Liu B, Wu Y, Mao Y, Zhao L, Sun T and Nan T 2019 Optik 194 163094 [15] Zhao N,Wang Z, Zhang Z, Lin Q, Yao K, Zhu L, Tian B, Zhao L, Yang P and Jiang Z 2022 Micromachines 13 658 [16] Qi K, Zhang Y, Sun J and Yi G 2020 Opt. Laser Technol. 129 106300 [17] Zhang J, Li Y and Yao G 2023 Int. J. Optomechatronics 17 2182389 [18] Ma Y, Yi Y, Li X, Su C, Zhang M, Geng T, Sun W and Yuan L 2021 Opt. Express 29 31443 [19] Jin B,Wang D, Xu B, Chen L and Yang K 2023 Opt. Fiber Technol. 80 103427 [20] Li Y, Chen H, Zhang Y, Chen Q, Wu B, Fan X, Liu Y and Ma M 2023 Chin. Phys. B 32 054209 [21] Cheng J, Wang C, Li Y, Zhang Y, Liu S and Dong P 2024 Chin. Phys. B 33 084201 [22] Hussain N, Masuk M R, Hossain M F and Kouzani A Z 2023 Opt. Express 31 26910 [23] Wang Q and Wang D 2024 Opt. Fiber Technol. 83 103683 [24] Qi Q, Li Y, Liu T, Zhang P, Dai S and Xu T 2023 Chin. Phys. B 32 014204 [25] Dowling J P 2008 Contemp. Phys. 49 125 [26] Boixo S, Datta A, Davis M J, Flammia S T, Shaji A and Caves C M 2008 Phys. Rev. Lett. 101 040403 [27] Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P and Dowling J P 2000 Phys. Rev. Lett. 85 2733 [28] Qiang W, Qian W, Zhen W and Hao L 2023 Chin. Opt. 16 434 [29] Bollinger J J, Itano W M, Wineland D J and Heinzen D J 1996 Phys. Rev. A 54 R4649 [30] Gerry C C 2000 Phys. Rev. A 61 043811 [31] Gerry C C and Mimih J 2010 Contemp. Phys. 51 497 [32] Zhang Z, Qiao T, Ma K, Zhang J, Cen L, Wang F and Zhao Y 2016 Opt. Express 24 18477 [33] Sajeev D, Shaik A, Pidishety S and Soorat R 2024 J. Quantum Comput. 6 53 [34] Zhang Z, Qiao T, Song J, Cen L, Zhang J, Li S, Yan L, Wang F and Zhao Y 2017 Opt. Commun. 403 92 [35] Zhang J, Zhang Z, Cen L, Li S, Zhao Y and Wang F 2017 Chin. Phys. B 26 094204 [36] Huver S D, Wildfeuer C F and Dowling J P 2008 Phys. Rev. A 78 063828 [37] Anisimov P M, Raterman G M, Chiruvelli A, Plick W N, Huver S D, Lee H and Dowling J P 2010 Phys. Rev. Lett. 104 103602 [38] Distante E, Ježek M and Andersen U L 2013 Phys. Rev. Lett. 111 033603 [39] Gerry C C 1993 J. Mod. Opt. 40 1053 [40] Roy Bardhan B, Jiang K and Dowling J P 2013 Phys. Rev. A 88 023857 [41] Cohen L, Istrati D, Dovrat L and Eisenberg H 2014 Opt. Express 22 11945 [42] Podoshvedov S A 2012 Opt. Commun. 285 3896 [43] Dakna M, Anhut T, Opatrný T, Knöll L and Welsch D G 1997 Phys. Rev. A 55 3184 [44] Huang K, Le Jeannic H, Ruaudel J, Verma V B, Shaw M D, Marsili F, Nam S W, Wu E, Zeng H and Jeong Y C 2015 Phys. Rev. Lett. 115 023602 [45] Stammer P, Rivera-Dean J, Lamprou T, Pisanty E, Ciappina M F, Tzallas P and Lewenstein M 2022 Phys. Rev. Lett. 128 123603 [46] Zhu D, Zhao Q Y, Choi H, Lu T J, Dane A E, Englund D and Berggren K K 2018 Nat. Nanotechnol. 13 596 [47] Mattioli F, Zhou Z, Gaggero A, Gaudio R, Jahanmirinejad S, Sahin D, Marsili F, Leoni R and Fiore A 2015 Supercond. Sci. Technol. 28 104001 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|