Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 010502    DOI: 10.1088/1674-1056/ad01a1
GENERAL Prev   Next  

Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding

Yiming Wang(王一铭)1,2, Shufeng Huang(黄树锋)1, Huang Chen(陈煌)2, Jian Yang(杨健)2,†, and Shuting Cai(蔡述庭)1,‡
1 School of Integrated Circuits, Guangdong University of Technology, Guangzhou 510006, China;
2 School of Automation, Guangdong University of Technology, Guangzhou 510006, China
Abstract  A novel image encryption scheme based on parallel compressive sensing and edge detection embedding technology is proposed to improve visual security. Firstly, the plain image is sparsely represented using the discrete wavelet transform. Then, the coefficient matrix is scrambled and compressed to obtain a size-reduced image using the Fisher--Yates shuffle and parallel compressive sensing. Subsequently, to increase the security of the proposed algorithm, the compressed image is re-encrypted through permutation and diffusion to obtain a noise-like secret image. Finally, an adaptive embedding method based on edge detection for different carrier images is proposed to generate a visually meaningful cipher image. To improve the plaintext sensitivity of the algorithm, the counter mode is combined with the hash function to generate keys for chaotic systems. Additionally, an effective permutation method is designed to scramble the pixels of the compressed image in the re-encryption stage. The simulation results and analyses demonstrate that the proposed algorithm performs well in terms of visual security and decryption quality.
Keywords:  visual security      image encryption      parallel compressive sensing      edge detection embedding  
Received:  07 July 2023      Revised:  20 September 2023      Accepted manuscript online:  10 October 2023
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
Fund: This work was supported by the Key Area R&D Program of Guangdong Province (Grant No. 2022B0701180001), the National Natural Science Foundation of China (Grant No. 61801127), the Science Technology Planning Project of Guangdong Province, China (Grant Nos. 2019B010140002 and 2020B111110002), and the Guangdong-Hong Kong-Macao Joint Innovation Field Project (Grant No. 2021A0505080006).
Corresponding Authors:  Jian Yang, Shuting Cai     E-mail:  yj@gdut.edu.cn;shutingcai@gdut.edu.cn

Cite this article: 

Yiming Wang(王一铭), Shufeng Huang(黄树锋), Huang Chen(陈煌), Jian Yang(杨健), and Shuting Cai(蔡述庭) Enhancing visual security: An image encryption scheme based on parallel compressive sensing and edge detection embedding 2024 Chin. Phys. B 33 010502

[1] Gui X Q, Huang J, Li L, Li S L and Cao J 2022 Multimedia Tools Appl. 81 21975
[2] Wang X Y and Liu P B 2022 IEEE Trans. Circuits Syst. I Regul. Pap. 69 1291
[3] Wang X Y, Gu S X and Zhang Y Q 2015 Opt. Lasers Eng. 68 126
[4] Alawida M, Samsudin A, Teh J S and Alkhawaldeh R S 2019 Signal Process. 160 45
[5] Wu J H, Liao X F and Yang B 2017 Signal Process. 141 109
[6] Chai X L, Chen Y R and Broyde L 2017 Opt. Lasers Eng. 88 197
[7] Hu T, Liu Y, Gong L H, Guo S B and Yuan HM 2017 Signal Process 134 234
[8] Chai X L, Fu X L, Gan Z H, Lu Y and Chen Y R 2019 Signal Process. 155 44
[9] Yang F F, Mou J, Cao Y H and Chu R 2020 China Commun. 17 21
[10] Ma Z L, Li J Q, Di X Q, Sheng Y H and Liu Z F 2021 Chaos Solitons Fractals 152 111318
[11] Wang X G, Zhou G Q, Dai C Q and Chen J L 2017 IEEE Photon. J. 9 1
[12] Hu G Q, Xiao D, Wang Y, Xiang T and Zhou Q 2017 Opt. Lasers Eng. 98 123
[13] Zhou N R, Yan X Y, Liang H R, Tao X Y and Li G Y 2018 Quantum Inf. Process. 17 338
[14] Wu W Q and Wang Q 2022 Int. J. Theor. Phys. 61 64
[15] Wang X Y and Gao S 2020 Multimedia Tools Appl. 80 10301
[16] Chai X L, Zhi X C, Gan Z H, Zhang Y S, Chen Y R and Fu J Y 2021 Signal Process. 183 108041
[17] Zhang L M, Sun K H, Liu W H and He S B 2017 Chin. Phys. B 26 100504
[18] Chen J X, Zhu Z L, Zhang L B, Zhang Y S and Yang B Q 2018 Signal Process. 142 340
[19] Hua Z Y, Yi S and Zhou Y C 2018 Signal Process. 144 134
[20] Li C L, Zhang Y, Li H D and Zhou Y 2023 Vis. Comput. (in press)
[21] Zhou Y, Li C L, Li W, Li H M, Feng W and Qian K 2021 Nonlinear Dyn. 103 2043
[22] Li C L, Zhou Y, Li H M, Feng W and Du J R 2021 Multimedia Tools Appl. 80 18479
[23] Huang W, Jiang D H, An Y S, Liu L D and Wang X Y 2021 IEEE Access 9 41704
[24] Jiang D H, Liu L D, Zhu L Y, Wang X Y, Rong X W and Chai H X 2021 Signal Process. 188 108220
[25] Xiao D, Cai H K and Zheng H Y 2015 Chin. Phys. B 24 060505
[26] Huang S F, Huang L Q, Cai S T, Xiong X M and Liu Y 2022 IET Image Process. 16 1544
[27] Yang C, Pan P and Ding Q 2022 Entropy 24 273
[28] Xu Q Y, Sun K H, He S B and Zhu C X 2020 Opt. Lasers Eng. 134 106178
[29] Huo D M, Zhu Z L, Wei L S, Han C and Zhou X 2021 Opt. Commun. 492 126976
[30] Zhou N R, Li H L, Wang D, Pan S M and Zhou Z H 2015 Opt. Commun. 343 10
[31] Yang Y G, Guan B W, Li J, Li D, Zhou Y H and Shi W M 2019 Opt. Laser Technol. 119 105661
[32] Bao L and Zhou Y C 2015 Inf. Sci. 324 197
[33] Chai X L, Gan Z H, Chen Y R and Zhang Y S 2017 Signal Process. 134 35
[34] Wang H, Xiao D, Li M, Xiang Y P and Li X Y 2019 Signal Process. 155 218
[35] Thanki R, Borra S, Dwivedi V and Borisagar K 2017 Imaging Sci. J. 65 457
[36] Wen H P, Ma L C, Liu L H, Huang Y M, Chen Z F, Li R, Liu Z, Lin W X, Wu J H, Li Y Q and Zhang C F 2022 Sci. Rep. 12 16523
[37] Musanna F, Dangwal D and Kumar S 2020 Multimedia Tools Appl. 79 25115
[38] Zhu L Y, Song H S, Zhang X, Yan M D, Zhang T, Wang X Y and Xu J 2020 Signal Process. 175 107629
[39] Luo W Q, Huang F J and Huang J W 2010 IEEE Trans. Inf. Forensics Secur. 5 201
[40] Rajendran S and Doraipandian M 2017 Int. J. Netw. Secur. 19 593
[41] Chai X L, Wu H Y, Gan Z H, Zhang Y S, Chen Y R and Nixon K W 2020 Opt. Lasers Eng. 124 105837
[42] Wu D C and Tsai W H 2003 Pattern Recognit. Lett. 24 1613
[43] Li H J, Yu C Z and Wang X Y 2020 Multimedia Tools Appl. 80 8721
[44] Jiang D H, Liu L D, Wang X Y and Rong X W 2021 IET Image Process. 15 3698
[45] Xie Y Q, Yu J Y, Guo S Y, Ding Q and Wang E F 2019 Entropy 21 819
[46] Ponuma R and Amutha R 2017 Multimedia Tools Appl. 77 19209
[1] Efficient single-pixel imaging encrypted transmission based on 3D Arnold transformation
Zhen-Yu Liang(梁振宇), Chao-Jin Wang(王朝瑾), Yang-Yang Wang(王阳阳), Hao-Qi Gao(高皓琪), Dong-Tao Zhu(朱东涛), Hao-Li Xu(许颢砾), and Xing Yang(杨星). Chin. Phys. B, 2024, 33(3): 034204.
[2] A lightweight symmetric image encryption cryptosystem in wavelet domain based on an improved sine map
Baichi Chen(陈柏池), Linqing Huang(黄林青), Shuting Cai(蔡述庭), Xiaoming Xiong(熊晓明), and Hui Zhang(张慧). Chin. Phys. B, 2024, 33(3): 030501.
[3] Coexistence behavior of asymmetric attractors in hyperbolic-type memristive Hopfield neural network and its application in image encryption
Xiaoxia Li(李晓霞), Qianqian He(何倩倩), Tianyi Yu(余天意),Zhuang Cai(才壮), and Guizhi Xu(徐桂芝). Chin. Phys. B, 2024, 33(3): 030505.
[4] A chaotic hierarchical encryption/watermark embedding scheme for multi-medical images based on row-column confusion and closed-loop bi-directional diffusion
Zheyi Zhang(张哲祎), Jun Mou(牟俊), Santo Banerjee, and Yinghong Cao(曹颖鸿). Chin. Phys. B, 2024, 33(2): 020503.
[5] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[6] Asymmetric image encryption algorithm based on a new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[7] Lossless embedding: A visually meaningful image encryption algorithm based on hyperchaos and compressive sensing
Xing-Yuan Wang(王兴元), Xiao-Li Wang(王哓丽), Lin Teng(滕琳), Dong-Hua Jiang(蒋东华), and Yongjin Xian(咸永锦). Chin. Phys. B, 2023, 32(2): 020503.
[8] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[9] Rucklidge-based memristive chaotic system: Dynamic analysis and image encryption
Can-Ling Jian(蹇璨岭), Ze-An Tian(田泽安), Bo Liang(梁波), Chen-Yang Hu(胡晨阳), Qiao Wang(王桥), and Jing-Xi Chen(陈靖翕). Chin. Phys. B, 2023, 32(10): 100503.
[10] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[11] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[12] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[13] FPGA implementation and image encryption application of a new PRNG based on a memristive Hopfield neural network with a special activation gradient
Fei Yu(余飞), Zinan Zhang(张梓楠), Hui Shen(沈辉), Yuanyuan Huang(黄园媛), Shuo Cai(蔡烁), and Sichun Du(杜四春). Chin. Phys. B, 2022, 31(2): 020505.
[14] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[15] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
No Suggested Reading articles found!