Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 090701    DOI: 10.1088/1674-1056/ade38a
Special Issue: Featured Column — INSTRUMENTATION AND MEASUREMENT
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Development of a ceramic gas-electron-multiplier neutron detector prototype with a large sensitive area

Lin Zhu(朱林)1,2, Jianrong Zhou(周健荣)1,2,3,†, Xiaojuan Zhou(周晓娟)1,2,‡, Lixin Zeng(曾莉欣)1,2, Liang Xiao(肖亮)1,2, Hong Xu(许虹)1,2, Fei Jia(贾飞)1,2, Chaoyue Zhang(张超月)1,2, Yezhao Yang(杨烨钊)4, Dingfu Li(黎定福)4, Hao Xiong(熊皓)4, Yuguang Xie(谢宇广)1,3, Yubin Zhao(赵豫斌)1,2,3, Yadong Wei(魏亚东)4, Zhijia Sun(孙志嘉)1,2,3, and Yuanbo Chen(陈元柏)1,2,3
1 State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
2 Spallation Neutron Source Science Center, Dongguan 523803, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Institute of Science & Technology Innovation, Dongguan University of Technology (Institute of Science & Technology Innovation and Advanced Manufacturing), Dongguan 523803, China
Abstract  The rapid growth of neutron flux has driven the development of $^{3}$He-free neutron detectors to satisfy the requirements of the neutron scattering instruments under construction or planned at the China Spallation Neutron Source (CSNS). Position-sensitive neutron detectors with a high counting rate and large area play an important role in the instruments performing neutron measurements in or close to the direct beam. The ceramic gas-electron-multiplier (GEM) detector serves as a promising solution, and considerable work has been done using the small-area GEM neutron detectors. In this article, we designed and constructed a detector prototype utilizing ceramic GEM foils with an effective area of about 307 mm$\times$307 mm. To evaluate and investigate their basic characteristics, the Monte Carlo (MC) tool FLUKA was employed and several neutron beam tests were conducted at CSNS. The simulated spatial resolution was basically in agreement with the measured value of 2.50$\pm$0.01 mm (FWHM). The wavelength spectra measurement was verified through comparisons with a commercial beam monitor. In addition, a detection efficiency of 4.7$\pm$0.1% was achieved for monoenergetic neutrons of 1.59 Å wavelength. This is consistent with the simulated result. The results indicate that the large-area ceramic GEM detector is a good candidate to implement neutron beam measurements. Its efficiency can be improved in a cascading manner to approach that reached by traditional $^{3}$He detectors.
Keywords:  neutron detector      counting rate      gas electron multiplier      spatial resolution      detection efficiency  
Received:  30 April 2025      Revised:  04 June 2025      Accepted manuscript online:  11 June 2025
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  29.40.Gx (Tracking and position-sensitive detectors)  
  28.20.Pr (Neutron imaging; neutron tomography)  
  61.05.F- (Neutron diffraction and scattering)  
Fund: Project supported by the National Key R&D Program of China (Grant No. 2023YFC2206502), the National Natural Science Foundation of China (Grant Nos. 12175254 and 12227810), Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2023B0303000003), and Guangdong Provincial Key Laboratory of Advanced Particle Detection Technology (Grant No. 2024B1212010005).
Corresponding Authors:  Jianrong Zhou, Xiaojuan Zhou     E-mail:  zhoujr@ihep.ac.cn;xjzhou@ihep.ac.cn

Cite this article: 

Lin Zhu(朱林), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lixin Zeng(曾莉欣), Liang Xiao(肖亮), Hong Xu(许虹), Fei Jia(贾飞), Chaoyue Zhang(张超月), Yezhao Yang(杨烨钊), Dingfu Li(黎定福), Hao Xiong(熊皓), Yuguang Xie(谢宇广), Yubin Zhao(赵豫斌), Yadong Wei(魏亚东), Zhijia Sun(孙志嘉), and Yuanbo Chen(陈元柏) Development of a ceramic gas-electron-multiplier neutron detector prototype with a large sensitive area 2025 Chin. Phys. B 34 090701

[1] Mason T E, Abernathy D, Anderson I, et al. 2006 Physica B 385 955
[2] Thomason J W 2019 Nucl. Instrum. Methods Phys. Res. A 917 61
[3] Oyama Y 2006 Nucl. Instrum. Methods Phys. Res. A 562 548
[4] Chen H S and Wang X L 2016 Nat. Mater. 15 689
[5] Lindroos M, Bousson S, Calaga R, Danared H, Devanz G, Duperrier R, Eguia J, Eshraqi M, Gammino S, Hahn H, Jansson A, Oyon C, Pape- Møller S, Peggs S, Ponton A, Rathsman K, Ruber R, Satogata T and Trahern G 2011 Nucl. Instrum. Methods Phys. Res. B 269 3258
[6] Ke Y B, He C Y, Zheng H B, Geng Y S, Fu J Y, Zhang S K, Hu H T, Wang S L, Zhou B, Wang F W and Tao J Z 2018 Neutron News 29 14
[7] Zhu T, Zhan X Z, Xiao S W, Sun Y, Wu Y Y, Zhou A Y and Han Q F 2018 Neutron News 29 11
[8] Chen J, Kang L and Lu H L 2018 Physica B 551 370
[9] Xu J P, Xia Y G, Li Z D, Chen H C, Wang X L, Sun Z Z and Yin W 2021 Nucl. Instrum. Methods Phys. Res. A 1013 165642
[10] Hendricks R W 1969 Rev. Sci. Instrum. 40 1216
[11] Dana A S and Daniel M 2011 The Helium-3 Shortage: Supply, Demand, and Options for Congress
[12] Sauli F 2002 Nucl. Instrum. Methods Phys. Res. A 477 1
[13] Klein M and Schmidt C J 2011 Nucl. Instrum. Methods Phys. Res. A 628 9
[14] Uno S, Uchida T, Sekimoto M, Murakami T, Miyama K, Shoji M, Nakano E, Koike T, Morita K, Satoh H, Kamiyama T and Kiyanagi Y 2012 Phys. Procedia 26 142
[15] Croci G, Cazzaniga C, Claps G, Tardocchi M, Rebai M, Murtas F, Vassallo E, Caniello R, Cippo E P, Grosso G, Rigato V and Gorini G 2014 Prog. Theor. Exp. Phys. 2014 83
[16] Köhli M, Allmendinger F, Häußler W, Schröder T, Klein M, Meven M and Schmidt U 2016 Nucl. Instrum. Methods Phys. Res. A 828 242
[17] Muraro A, Claps G, Croci G, Lai C C, Oliveira R D, Altieri S, Cancelli S, Gorini G, Hall-Wilton R, Höglund C, Cippo E P, Robinson L, Svensson P and Murtas F 2021 Eur. Phys. J. Plus 136 742
[18] Ohshita H, Otomo T, Uno S, Ikeda K, Uchida T, Kaneko N, Koike T, Shoji M, Suzuya K, Seya T and Tsubota M 2012 Nucl. Instrum. Methods Phys. Res. A 672 75
[19] Zhou J R, Zhou X J, Zhou J J, Jiang X F, Yang J Q, Zhu L, Yang W Q, Yang T, Xu H, Xia Y G, Yang G A, Xie Y G, Huang C Q and Hu B T, Sun Z J and Chen Y B 2020 Nucl. Eng. Technol. 52 1277
[20] Zhou J R, Zhou X J, Zhou J J, Teng H Y, Yang J Q, Ma Y C, Zhou K, Xia Y G, Xiu Q L, Yang T, Jiang X F, Zhu L, Yang W Q, Yang G A, Xie Y G, Hu B T, Sun Z J and Chen Y B 2020 Nucl. Instrum. Methods Phys. Res. Sect. A 962 163593
[21] Zhou J J, Zhou J R, Zhou X J, Zhu L, Wei Y D, Xu H, Guan B J, Wu H Y, Wei K, Yang J Q, Wu X G, Yang G A, Xie Y G, Zhang Y, Wang X H, Ding B W, Hu B T, Sun Z J, Duan L M and Chen Y B 2021 Nucl. Instrum. Methods Phys. Res. A 995 165129
[22] Yang T, Zhou J R, Zhou X J, Zhu L, Zhu H Y, Zhou J J, Xia Y G, Wei Y D, Jiang X F, Yang W Q, Yang G A, Wang S L, Xie Y G, Sun Z J, Ouyang Q, Zhu J T and Chen Y B 2022 IEEE Trans. Nucl. Sci. 69 68
[23] Zhu L, Zhou J R, Zeng L X, et al. 2023 J. Instrum. 18 P01033
[24] Tan J H, Zhou J R, Zhu L, et al. 2023 Rev. Sci. Instrum. 94 103304
[25] Sauli F 2002 Nucl. Instrum. Methods Phys. Res. A 479 294
[26] Kaminski J, Ball M, Bieser F, Janssen M, Kappler S, Ledermann B, Müller T, Ronan M and Wienemann P 2004 Nucl. Instrum. Methods Phys. Res. A 535 201
[27] Becker J, Bösiger K, Lindfeld L, Müller K, Robmann P, Schmitt S, Schmitz C, Steiner S, Straumann U, Szeker K, Truöl P, Urban M, Vollhardt A, Werner N, Baumeister D, Löchner S and Hildebrandt M 2008 Nucl. Instrum. Methods Phys. Res. A 586 190
[28] Neutron Beam Monitors https://ordela.com/neutron-beam-monitors/
[1] A large-area scintillation neutron detector based on WLSF and SiPM readout
Xiao-Hu Wang(王小胡), Yang-Tu Lu(卢扬图), Bin Tang(唐彬), Xiu-Ku Wang(王修库), Shao-Jia Chen(陈少佳), Ze-Ren Li(李泽仁), and Zhi-Jia Sun(孙志嘉). Chin. Phys. B, 2025, 34(6): 066106.
[2] Performance optimization of the neutron-sensitive image intensifier used in neutron imaging
Jinhao Tan(谭金昊), Yushou Song(宋玉收), Jianrong Zhou(周健荣), Wenqin Yang(杨文钦), Xingfen Jiang(蒋兴奋), Jie Liu(刘杰), Chaoyue Zhang(张超月), Xiaojuan Zhou(周晓娟), Yuanguang Xia(夏远光), Shulin Liu(刘术林), Baojun Yan(闫保军), Hui Liu(刘辉), Songlin Wang(王松林), Yubin Zhao(赵豫斌), Jian Zhuang(庄建), Zhijia Sun(孙志嘉), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2024, 33(8): 086102.
[3] Development of a monochromatic crystal backlight imager for the recent double-cone ignition experiments
Chenglong Zhang(张成龙), Yihang Zhang(张翌航), Xiaohui Yuan(远晓辉), Zhe Zhang(张喆), Miaohua Xu(徐妙华), Yu Dai(戴羽), Yufeng Dong(董玉峰), Haochen Gu(谷昊琛), Zhengdong Liu(刘正东), Xu Zhao(赵旭), Yutong Li(李玉同), Yingjun Li(李英骏), Jianqiang Zhu(朱健强), and Jie Zhang(张杰). Chin. Phys. B, 2024, 33(2): 025201.
[4] Silicon photomultiplier based scintillator thermal neutron detector for China Spallation Neutron Source (CSNS)
Xiu-Ping Yue(岳秀萍), Zhi-Fu Zhu(朱志甫), Bin Tang(唐彬), Chang Huang(黄畅), Qian Yu(于潜), Shao-Jia Chen(陈少佳), Xiu-Ku Wang(王修库), Hong Xu(许虹), Shi-Hui Zhou(周诗慧),Xiao-Jie Cai(蔡小杰), Hao Yang(杨浩), Zhi-Yong Wan(万志勇),Zhi-Jia Sun(孙志嘉), and Yun-Tao Liu(刘云涛). Chin. Phys. B, 2023, 32(9): 090402.
[5] Performance optimization of scintillator neutron detectors for EMD in CSNS
Xiaojie Cai(蔡小杰), Qian Yu(于潜), Chang Huang(黄畅), Bin Tang(唐彬), Shihui Zhou(周诗慧), Xiaohu Wang(王小胡), Xiuping Yue(岳秀萍), and Zhijia Sun(孙志嘉). Chin. Phys. B, 2023, 32(11): 110701.
[6] A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2022, 31(5): 050702.
[7] Simulation of GaN micro-structured neutron detectors for improving electrical properties
Xin-Lei Geng(耿昕蕾), Xiao-Chuan Xia(夏晓川), Huo-Lin Huang(黄火林), Zhong-Hao Sun(孙仲豪), He-Qiu Zhang(张贺秋), Xing-Zhu Cui(崔兴柱), Xiao-Hua Liang(梁晓华), Hong-Wei Liang(梁红伟). Chin. Phys. B, 2020, 29(2): 027201.
[8] Performance improvement of 4H-SiC PIN ultraviolet avalanche photodiodes with different intrinsic layer thicknesses
Xiaolong Cai(蔡小龙), Dong Zhou(周东), Liang Cheng(程亮), Fangfang Ren(任芳芳), Hong Zhong(钟宏), Rong Zhang(张荣), Youdou Zheng(郑有炓), Hai Lu(陆海). Chin. Phys. B, 2019, 28(9): 098503.
[9] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[10] Areal density and spatial resolution of high energy electron radiography
Jiahao Xiao(肖家浩), Zimin Zhang(张子民), Shuchun Cao(曹树春), Ping Yuan(袁平), Xiaokang Shen(申晓康), Rui Cheng(程锐), Quantang Zhao(赵全堂), Yang Zong(宗阳), Ming Liu(刘铭), Xianming Zhou(周贤明), Zhongping Li(李中平), Yongtao Zhao(赵永涛), Chuanxiang Tang(唐传祥), Wenhui Huang(黄文会), Yingchao Du(杜应超), Wei Gai(盖炜). Chin. Phys. B, 2018, 27(3): 035202.
[11] Applications of nanostructures in wide-field, label-free super resolution microscopy
Xiaowei Liu(刘小威), Chao Meng(孟超), Xuechu Xu(徐雪初), Mingwei Tang(汤明炜), Chenlei Pang(庞陈雷), Qing Yang(杨青). Chin. Phys. B, 2018, 27(11): 118704.
[12] Investigation of noise properties in grating-based x-ray phase tomography with reverse projection method
Bao Yuan (鲍园), Wang Yan (王研), Gao Kun (高昆), Wang Zhi-Li (王志立), Zhu Pei-Ping (朱佩平), Wu Zi-Yu (吴自玉). Chin. Phys. B, 2015, 24(10): 108702.
[13] Preliminary results for the design, fabrication, and performance of a backside-illuminated avalanche drift detector
Qiao Yun (乔赟), Liang Kun (梁琨), Chen Wen-Fei (陈文飞), Han De-Jun (韩德俊). Chin. Phys. B, 2013, 22(10): 108504.
[14] Modulation transfer function characteristic of uniform-doping transmission-mode GaAs/GaAlAs photocathode
Ren Ling(任玲) and Chang Ben-Kang(常本康) . Chin. Phys. B, 2011, 20(8): 087308.
[15] Images of triple gas electron multiplier with pixel-pads
Dong Jing(董静), Hu Bi-Tao(胡碧涛), Chen Yuan-Bo(陈元柏), and Xie Yi-Gang(谢一冈). Chin. Phys. B, 2009, 18(10): 4229-4233.
No Suggested Reading articles found!