Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(12): 128501    DOI: 10.1088/1674-1056/adea9d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

β-Ga2O3/BP heterojunction for deep ultraviolet and infrared narrowband dual-band photodetection

Zhichao Chen(陈志超)1, Feng Ji(季枫)1, Yadan Li(李亚丹)1, Yahan Wang(王雅涵)1, Xuehao Ge(葛薛豪)1, Kai Jiang(姜凯)1, Hai Zhu(朱海)2, and Xianghu Wang(王相虎)1
1 College of Arts and Sciences, Shanghai Dianji University, Shanghai 200240, China;
2 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  The development of high-performance dual-band photodetectors (PDs) capable of simultaneous deep ultraviolet (DUV) and infrared (IR) detection is critical for advanced optoelectronic applications, particularly in missile warning and target identification systems. Conventional UV/IR PDs often suffer from UV (320-400~nm) noise interference and limited responsivity due to the use of narrow-bandgap semiconductors and self-powered operation modes. To address these challenges, high-quality $\beta$-Ga$_{2}$O$_{3}$ thin films were epitaxially grown on c-plane sapphire via metalorganic chemical vapor deposition (MOCVD), exhibiting excellent crystallinity and surface morphology. Unlike conventional heterojunctions ($\beta$-Ga$_{2}$O$_{3}$/graphene or $\beta$-Ga$_{2}$O$_{3}$/TMDs), the $\beta$-Ga$_{2}$O$_{3}$/BP structure leverages BP's tunable bandgap and high carrier mobility while maintaining strong type-II band alignment, thereby facilitating efficient charge separation under both UV and IR illumination. We present a high-sensitivity dual-band PD based on a $\beta$-Ga$_{2}$O$_{3}$/black phosphorus (BP) pn heterojunction. The ultrawide bandgap of $\beta$-Ga$_{2}$O$_{3}$ enables selective detection of DUV light while effectively suppressing interference from long-wave ultraviolet (UVA, 320-400 nm), whereas BP provides a layer-dependent infrared (IR) response. Photocurrent analysis reveals distinct carrier transport mechanisms, with electrons dominating under UV illumination and holes contributing predominantly under IR exposure. A systematic investigation of the bias-dependent photoresponse demonstrates that the responsivity increases significantly at higher voltages. Under a 7 V bias, the device exhibits a high responsivity of $4.63 \times 10^{-2}$ $\rm{mA/W}$ at 254 nm and $2.35 \times 10^{-3}$ $\rm{mA/W}$ at 850 nm. This work not only provides a viable strategy for developing high-performance dual-band PDs but also advances the understanding of heterojunction-based optoelectronic devices for military and sensing applications.
Keywords:  $\beta$-Ga$_{2}$O$_{3}$/black phosphorus heterojunction      dual-band photodetector      deep ultraviolet      infrared detection  
Received:  12 May 2025      Revised:  26 June 2025      Accepted manuscript online:  02 July 2025
PACS:  85.60.Gz (Photodetectors (including infrared and CCD detectors))  
  73.40.Lq (Other semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  42.79.Pw (Imaging detectors and sensors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. U22A2073).
Corresponding Authors:  Kai Jiang, Hai Zhu, Xianghu Wang     E-mail:  32077@sdju.edu.cn;zhuhai5@mail.sysu.edu.cn;wangxh@sdju.edu.cn

Cite this article: 

Zhichao Chen(陈志超), Feng Ji(季枫), Yadan Li(李亚丹), Yahan Wang(王雅涵), Xuehao Ge(葛薛豪), Kai Jiang(姜凯), Hai Zhu(朱海), and Xianghu Wang(王相虎) β-Ga2O3/BP heterojunction for deep ultraviolet and infrared narrowband dual-band photodetection 2025 Chin. Phys. B 34 128501

[1] Tang X, Ackerman M M and Chen M 2019 Nat. Photonics 13 277
[2] Wu P, Ye L and Tong L 2022 Light Sci. Appl. 11 6
[3] Zheng Q, Xu J P and Shi S B 2023 Phys. Chem. Chem. Phys. 25 30228
[4] Pan Y Z, Wang X and Zhang D 2024 ACS Photonics 11 1254
[5] Xu H J, Weng Y X, Chen K, Wu C and Guo D Y 2025 Adv. Opt. Mater. 13 2402238
[6] Fu Z, Gao S and Yuan Y 2022 Adv. Mater. Interfaces 9 2200165
[7] Fu R, Jiang X and Wang Y 2024 J. Alloys Compd. 978 173533
[8] Wang F, Chang D and Wang Z 2022 Appl. Phys. A 128 418
[9] Tang Q, Zhong F and Li Q 2023 Nanomaterials 13 1169
[10] Chen T, Zhang J and Zhang X 2023 IEEE Sens. J. 23 15506
[11] Wang Z, Gao Y and Li Y 2024 Adv. Funct. Mater. 34 2310911
[12] Kim W, Seo Y and Ahn D 2024 Adv. Sci. 11 2308840
[13] Wu G, Chen K, Ni Y Z, Wu C and Guo D Y 2025 Mater. Today Phys. 53 101702
[14] Chen S, Wang H and Yang Y Q 2024 J. Mater. Chem. C 12 5610
[15] Li L, Chen H Y and Fang Z M 2020 Adv. Mater. 32 1907257
[16] Zhang G, Wang Z Y, Chen S W, Wu C, Liu Z and Guo D Y 2025 Laser Photon. Rev. e00255
[17] Fathabadi M and Zhao S 2023 ACS Photonics 10 2825
[18] Zhu J J, Cai Q, You H F, Wang J, Xue J J and Ye J D 2023 Opt. Express 31 18330
[19] Ibrahem M A, Verrelli E, Lai K T and Cheng F 2017 ACS Appl. Mater. Interfaces 9 36974
[20] Lu Y, Wang B, Yang M L, Zhang Q C, Jiang Z M and Zhang N N 2023 Appl. Phys. Lett. 123 023504
[21] Nikolskaya A, Okulich E and Korolev D 2021 J. Vac. Sci. Technol. A 39 030801
[22] He T, Li C, Zhang X D, Ma Y J, Zhang X P and Zhang B S 2020 Phys. Status Solidi A 217 1900861
[23] Chen T W, Zhang X D, Ma Y J and Zhang B S 2021 Adv. Photonics Res. 2 2100049
[24] Huang H C, Kim M and Zhan X 2019 ACS Nano 13 8784
[25] Guo Q, Pospischil A and Bhuiyan M 2016 Nano Lett. 16 4648
[26] Ma Y J, Zhang X D and Feng B Y 2022 Vacuum 198 110886
[27] Tang Z Y, Zheng H Y, Wang B C, Wang X H and Zhu H 2023 Mater. Today Phys. 34 101073
[28] Dan M, Jin Y F, Chen L J and Lv X W 2024 J. Alloys Compd. 1010 178022
[29] Chen R R, Wang D, Han X Y, Feng B and Xiao H H 2023 Appl. Phys. Lett. 123 082101
[30] Zhu Y Y, Wang Y, Pang X C, Hu W D and Zhou P 2024 Nat. Commun. 15 6015
[31] Du K X, Wang M Y, Liang Z P, Liu G W, Liu J L and Qiao G J 2024 Appl. Phys. Lett. 124 063508
[32] Li D X, Li R Q, Zeng F J, Long L and Cai S H 2024 Appl. Surf. Sci. 681 161524
[33] Xi Z Y, Yang L L, Liu Z, Yao S H, Shu L C and Zhang M L 2023 J. Phys. D: Appl. Phys. 57 085101
[34] Han Y R, Wang Y F, Fu S H, Ma J G, Xu H Y and Li B S 2023 Small 19 2206664
[35] Sheoran H, Fang S, Liang F Z and Huang Z 2022 ACS Appl. Mater. Interfaces 14 52096
[36] Guo Y B, Li Y G, Zhang Q H and Wang H Z 2017 J. Mater. Chem. C 5 1436
[37] Ouyang B, Wang Y, Zhang R and Yang Y 2021 Cell Rep. Phys. Sci. 2 100418
[38] Shang C R, Chen R R, Mi W, Wang J P, Chen Z L and Zhao J S 2025 Mater. Sci. Semicond. Process. 192 109472
[1] High performance solar-blind deep ultraviolet photodetectors via β-phase (In0.09Ga0.91)2O3 single crystalline film
Bicheng Wang(王必成), Ziying Tang(汤梓荧), Huying Zheng(郑湖颖), Lisheng Wang(王立胜), Yaqi Wang(王亚琪), Runchen Wang(王润晨), Zhiren Qiu(丘志仁), and Hai Zhu(朱海). Chin. Phys. B, 2023, 32(9): 098508.
[2] Realization of high-efficiency AlGaN deep ultraviolet light-emitting diodes with polarization-induced doping of the p-AlGaN hole injection layer
Yi-Wei Cao(曹一伟), Quan-Jiang Lv(吕全江), Tian-Peng Yang(杨天鹏), Ting-Ting Mi(米亭亭),Xiao-Wen Wang(王小文), Wei Liu(刘伟), and Jun-Lin Liu(刘军林). Chin. Phys. B, 2023, 32(5): 058503.
[3] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[4] Deep-ultraviolet and visible dual-band photodetectors by integrating Chlorin e6 with Ga2O3
Yue Zhao(赵越), Jin-Hao Zang(臧金浩), Xun Yang(杨珣), Xue-Xia Chen(陈雪霞), Yan-Cheng Chen(陈彦成), Kai-Yong Li(李凯永), Lin Dong(董林), and Chong-Xin Shan(单崇新). Chin. Phys. B, 2021, 30(7): 078504.
[5] An improved design for AlGaN solar-blind avalanche photodiodes with enhanced avalanche ionization
Yin Tang(汤寅), Qing Cai(蔡青), Lian-Hong Yang(杨莲红), Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Hai Lu(陆海), Rong Zhang(张荣), You-Dou Zheng(郑有炓). Chin. Phys. B, 2017, 26(3): 038503.
[6] Deep-ultraviolet surface plasmon resonance of Al and Alcore/Al2O3shell nanosphere dimers for surface-enhanced spectroscopy
Ci Xue-Ting (慈雪婷), Wu Bo-Tao (吴伯涛), Song Min (宋敏), Chen Geng-Xu (陈耿旭), Liu Yan (刘岩), Wu E (武愕), Zeng He-Ping (曾和平). Chin. Phys. B, 2014, 23(9): 097303.
[7] A picosecond widely tunable deep-ultraviolet laser for angle-resolved photoemission spectroscopy
Zhang Feng-Feng (张丰丰), Yang Feng (杨峰), Zhang Shen-Jin (张申金), Xu Zhi (徐志), Wang Zhi-Min (王志敏), Xu Feng-Liang (许凤良), Peng Qin-Jun (彭钦军), Zhang Jing-Yuan (张景园), Wang Xiao-Yang (王晓洋), Chen Chuang-Tian (陈创天), Xu Zu-Yan (许祖彦). Chin. Phys. B, 2013, 22(6): 064212.
No Suggested Reading articles found!