| CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Quantum phase transitions with eigen microstate approach in one-dimensional transverse-field Ising model |
| Zhongshan Su(苏中山)1, Yuan Jiang(江源)1, Gaoke Hu(胡高科)2,1, Yue-Hua Su(苏跃华)3, Liangsheng Li(李粮生)4, Wen-Long You(尤文龙)2,†, Maoxin Liu(刘卯鑫)1,‡, and Xiaosong Chen(陈晓松)1,§ |
1 School of Systems Science & Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China; 2 College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China; 3 Department of Physics, Yantai University, Yantai 264005, China; 4 National Key Laboratory of Scattering and Radiation, Beijing 100854, China |
|
|
|
|
Abstract We propose an eigen microstate approach (EMA) for analyzing quantum phase transitions in quantum many-body systems, introducing a novel framework that does not require prior knowledge of an order parameter. Using the transverse-field Ising model (TFIM) as a case study, we demonstrate the effectiveness of EMA by identifying key features of the phase transition through the scaling behavior of eigenvalues and the structure of associated eigen microstates. Our results reveal substantial changes in the ground state of the TFIM as it undergoes a phase transition, as reflected in the behavior of specific components $\xi^{(k)}_i$ within the eigen microstates. This method is expected to be applicable to other quantum systems where predefining an order parameter is challenging.
|
Received: 29 March 2025
Revised: 28 April 2025
Accepted manuscript online: 29 April 2025
|
|
PACS:
|
64.60.De
|
(Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))
|
| |
05.30.Rt
|
(Quantum phase transitions)
|
| |
75.40.Mg
|
(Numerical simulation studies)
|
| |
89.75.Da
|
(Systems obeying scaling laws)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12475033, 12135003, 12174194, and 12405032) and the National Key Research and Development Program of China (Grant No. 2023YFE0109000). Maoxin Liu is supported by the Fundamental Research Funds for the Central Universities. Gaoke Hu acknowledges financial support from the China Postdoctoral Science Foundation (Grant No. 2023M730299). |
Corresponding Authors:
Wen-Long You, Maoxin Liu, Xiaosong Chen
E-mail: wlyou@nuaa.edu.cn;mxliu@bnu.edu.cn;chenxs@bnu.edu.cn
|
Cite this article:
Zhongshan Su(苏中山), Yuan Jiang(江源), Gaoke Hu(胡高科), Yue-Hua Su(苏跃华), Liangsheng Li(李粮生), Wen-Long You(尤文龙), Maoxin Liu(刘卯鑫), and Xiaosong Chen(陈晓松) Quantum phase transitions with eigen microstate approach in one-dimensional transverse-field Ising model 2025 Chin. Phys. B 34 086401
|
[1] Sachdev S 2011 Quantum Phase Transitions 2nd Edn. (Cambridge university press) [2] Sondhi S L, Girvin S M, Carini J P and Shahar D 1997 Rev. Mod. Phys. 69 315 [3] Yuan H Q, Grosche F M, Deppe M, Geibel C, Sparn G and Steglich F 2003 Science 302 2104 [4] Brando M, Belitz D, Grosche F M and Kirkpatrick T R 2016 Rev. Mod. Phys. 88 025006 [5] Nielsen, M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) [6] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902 [7] Osterloh A, Amico L, Falci G and Fazio R 2002 Nature 416 608 [8] Landau L D 1937 Zh. Eksp. Teor. Fiz. 11 627 [9] Landau L D, Lifshitz E M and Pitaevskii E M 1980 Statistical Physics Part 2: theory of the condensed state, Vol. 9 (Oxford: Butterworth– Heinemann) [10] Aranson I S and Kramer L 2002 Rev. Mod. Phys. 74 99 [11] Sachdev S 2000 Science 288 475 [12] Sachdev S 2008 Nat. Phys. 4 173 [13] Vidal G, Latorre J I, Rico E and Kitaev A 2003 Phys. Rev. Lett. 90 227902 [14] Senthil T, Vishwanath A, Balents L, Sachdev S and Fisher M P A 2004 Science 303 1490 [15] Berezinsky V L 1972 Sov. Phys. JETP 34 610 [16] Kosterlitz J M and Thouless D J 1973 J. Phys. C: Solid State Phys. 6 1181 [17] Shimizu Y, Miyagawa K, Kanoda K, Maesato M and Saito G 2003 Phys. Rev. Lett. 91 107001 [18] Yan S, Huse D A and White S R 2011 Science 332 1173 [19] Isakov S V, Hastings M B and Melko R G 2011 Nat. Phys. 7 772 [20] Shao H, Guo W and Sandvik A W 2016 Science 352 213 [21] Senthil T, Balents L, Sachdev S, Vishwanath A and Fisher M P A 2004 Phys. Rev. B 70 144407 [22] Ma X, Xie F, Chen X S, Liu N and Liang R Z 2024 Environ. Res. Lett. 19 084019 [23] Hu G K, Liu T, LiuMX, ChenWand Chen X S 2019 Sci. China- Phys. Mech. Astron. 62 990511 [24] Zhang X, Hu G K, Zhang Y W, Li X T and Chen X S 2018 Sci. China- Phys. Mech. Astron. 61 1 [25] Liu T, Hu G K, Dong J Q, Fan J F, Liu M X and Chen X S 2022 Chin. Phys. Lett. 39 080503 [26] Chen X J, Ying N, Chen D, Zhang Y W, Lu B, Fan J F and Chen X S 2021 Chaos 31 071102 [27] Li X, Xue T T, Sun Y, Fan J F, Li H, Liu M X, Han Z G, Di Z R and Chen X S 2021 Chin. Phys. B 30 128703 [28] Sun Y, Hu G K, Zhang Y W, Lu B, Lu Z H, Fan J F, Li X, Deng Q and Chen X S 2021 Commun. Theor. Phys. 73 065603 [29] Zheng Z G, Xu C, Fan J F, Liu M X and Chen X S 2024 Chaos 34 022101 [30] Chen X, Ren H D, Tang Z H, Zhou K, Zhou L Q, Zuo Z T, Cui X H, Chen X S, Liu Z H, He Y and Liao X H 2023 Commun. Biol. 6 892 [31] Wang X, Fan H, Chen X S, Xie Y R and Wang H Y 2024 Ecol. Indic. 159 111689 [32] Gibbs J W 1902 Elementary Principles in Statistical Mechanics (New York: Charles Scribner’s Sons) [33] Hu G K, Liu M X and Chen X S 2023 Physica A 630 129210 [34] Wu N 2020 Phys. Rev. E 101 042108 [35] Chakrabarti B K, Dutta A and Sen P 1996 Quantum Ising Phases and Transitions in Transverse Ising Models (Lecture Notes in Physics Monograph m41) (Heidelberg: Springer) [36] Pfeuty P 1970 Ann. Phys. 57 79 [37] Suzuki M 1976 Prog. Theor. Phys. 56 1454 [38] Barouch E, McCoy B M and Dresden M 1970 Phys. Rev. A 2 1075 [39] Blume M 1969 J. Appl. Phys. 40 915 [40] Edwards S F and Anderson P W 1975 J. Phys. F: Met. Phys. 5 965 [41] Aubry S 1980 Ferroelectrics 24 53 [42] Fisher D S 1994 Phys. Rev. B 50 3799 [43] Fisher D S, Fisher M P A and Huse D A 1991 Phys. Rev. B 43 130 [44] Coldea R, Tennant D A, Wheeler E M,Wawrzynska E, Prabhakaran D, Telling M, Habicht K, Smeibidl P and Kiefer K 2010 Science 327 177 [45] Cheuk L W, Nichols M A, Okan M, Gersdorf T, Ramasesh V V, Bakr W S, Lompe T and Zwierlein M W 2015 Phys. Rev. Lett. 114 193001 [46] Zhang Y S and Wang L 2022 Chin. Phys. B 31 110205 [47] Mok K, Kovács G J, McCord J, Li L, Helm M and Schmidt H 2011 Phys. Rev. B 84 094413 [48] Zenkyu R, Yuhara J, Matsui T, Zaman S S, SchmidMand Varga P 2012 Phys. Rev. B 86 115422 [49] Zhang L and Ding C X 2023 Chin. Phys. Lett. 40 010501 [50] Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504 [51] Calabrese P and Lefevre A 2008 Phys. Rev. A 78 032329 [52] Chiara G D, Lepori L, Lewenstein M and Sanpera A 2012 Phys. Rev. Lett. 109 237208 [53] Liu G H, Li W, You W L, Su G and Tian G S 2013 Euro. Lett. 101 57001 [54] White S R 1992 Phys. Rev. Lett. 69 2863 [55] Sandvik A W and Kurkijärvi, Juhani 1991 Phys. Rev. B 43 5950 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|