Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(2): 028705    DOI: 10.1088/1674-1056/ad062c
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise

Xun Yan(晏询)1, Zhijun Li(李志军)1,†, and Chunlai Li(李春来)2
1 School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China;
2 School of Computer Science & School of Cyberspace Science, Xiangtan University, Xiangtan 411105, China
Abstract  Research on discrete memristor-based neural networks has received much attention. However, current research mainly focuses on memristor-based discrete homogeneous neuron networks, while memristor-coupled discrete heterogeneous neuron networks are rarely reported. In this study, a new four-stable discrete locally active memristor is proposed and its nonvolatile and locally active properties are verified by its power-off plot and DC V-I diagram. Based on two-dimensional (2D) discrete Izhikevich neuron and 2D discrete Chialvo neuron, a heterogeneous discrete neuron network is constructed by using the proposed discrete memristor as a coupling synapse connecting the two heterogeneous neurons. Considering the coupling strength as the control parameter, chaotic firing, periodic firing, and hyperchaotic firing patterns are revealed. In particular, multiple coexisting firing patterns are observed, which are induced by different initial values of the memristor. Phase synchronization between the two heterogeneous neurons is discussed and it is found that they can achieve perfect synchronous at large coupling strength. Furthermore, the effect of Gaussian white noise on synchronization behaviors is also explored. We demonstrate that the presence of noise not only leads to the transition of firing patterns, but also achieves the phase synchronization between two heterogeneous neurons under low coupling strength.
Keywords:  heterogeneous neuron network      discrete memristor      coexisting attractors      synchronization      noise  
Received:  14 September 2023      Revised:  10 October 2023      Accepted manuscript online:  24 October 2023
PACS:  87.19.lj (Neuronal network dynamics)  
  87.19.lm (Synchronization in the nervous system)  
  05.40.Ca (Noise)  
  45.05.+x (General theory of classical mechanics of discrete systems)  
Fund: Project supported by the National Natural Science Foundations of China (Grant Nos. 62171401 and 62071411).
Corresponding Authors:  Zhijun Li     E-mail:  lizhijun@xtu.edu.cn

Cite this article: 

Xun Yan(晏询), Zhijun Li(李志军), and Chunlai Li(李春来) Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise 2024 Chin. Phys. B 33 028705

[1] Hindmarsh J L and Rose R M 1982 Nature 296 162
[2] Wang M, Yang Y, Wang C J, Gamo N J, Jin L E, Mazer J A, Morrison J H, Wang X J and Arnsten A F T 2013 Neuron 77 736
[3] Zhu Z, Wang R and Zhu F 2018 Frontiers in Neuroscience 12 122
[4] Hodgkin A L and Huxley A F 1952 The Journal of Physiology 117 500
[5] Lindner B and Schimansky G L 1999 Phys. Rev. E 60 7270
[6] FitzHugh R 1961 Biophys. J. 1 445
[7] Zhang G, Wang C, Alzahrani F, Wu F Q and An X L 2018 Chaos, Solitons & Fractals 108 15
[8] Xu Y, Guo Y, Ren G and Ma J 2020 Appl. Math. Comput. 385 125427
[9] Hindmarsh J L and Rose R M 1984 Proc. Roy. Soc. Lond. Ser. B Biolog. Sci. 221 87
[10] Lu Y, Li H and Li C 2023 Neurocomputing 544 126246
[11] Usha K and Subha P A 2019 Biosystems 178 1
[12] Ma X, Li C and Li Y 2022 Eur. Phys. J. Plus 137 542
[13] Hindmarsh J L and Rose R M 1982 Nature 296 162
[14] Morris C and Lecar H 1981 Biophys. J. 35 193
[15] Wang H, Lu Q and Wang Q 2008 Commun. Nonlinear Sci. Numer. Simul. 13 1668
[16] Bao B, Yang Q, Zhu L, Yu Y, Mo C, Bao H and Quan X 2019 Int. J. Bifur. Chaos 29 1950134
[17] Song X, Wang H and Chen Y 2019 Nonlinear Dyn. 96 2341
[18] Bao H, Zhu D, Liu W, Quan X, Mo C and Bao B 2020 Int. J. Bifur. Chaos 30 2050045
[19] Wen Z, Wang C, Deng Q and Lin H 2022 Nonlinear Dyn. 110 3823
[20] Tan Y and Wang C 2020 Chaos 30 053118
[21] Shen H, Yu F, Wang C, Cai S and Sun J 2022 Nonlinear Dyn. 110 3807
[22] Lin H, Wang C, Cui L, Yu F, Sun Y and Xu C 2022 IEEE Trans. Industr. Inform. 18 8839
[23] Gu H, Li C and Li Y 2023 Nonlinear Dyn. 111 7807
[24] Ibarz B, Casado J M and Sanjuán M A F 2011 Phys. Rep. 501 1
[25] Ma M L, Xie X H, Yang Y and Li Z J, Sun Y C 2023 Chin. Phys. B 32 058701
[26] Ma M, Lu Y, Li Z, Wang C and Sun Y 2023 Fractal and Fractional 7 82
[27] He S, Fu L, Lu Y, Wu X, Wang C and Sun K 2022 IEEE Trans. Circ. Sys. II: Express Briefs 70 885
[28] Wang M, An M, Zhang X and Lu H H C 2023 IEEE Trans. Circ. Systems II: Express Briefs 1-1
[29] He S, Liu J, Wang H and Sun K 2023 Neurocomputing 523 1
[30] Peng Y, Liu J, He S and Sun K 2023 Chaos, Solitons & Fractals 171 113429
[31] Peng Y, He S and Sun K 2022 Nonlinear Dyn. 107 1263
[32] Chen K and Li Z 2023 Chaos, Solitons & Fractals 175 114017
[33] Li K, Bao B, Ma J, Chen M and Bao H 2022 Chaos, Solitons & Fractals 165 112861
[34] Shang C, He S, Rajagopal K, Sun K and Wang H 2022 Eur. Phys. J. Spec. Top. 231 4065
[35] Mehrabbeik M, Parastesh F, Ramadoss J, Rajagopal K, Namazi H and Jafari S 2021 Math. Biosc. Eng. 18 9394
[36] Li H, Li C and Du J 2023 Nonlinear Dyn. 111 2895
[37] Izhikevich E M 2003 IEEE Transa. Neural Networks 14 1569
[38] Nobukawa S, Nishimura H, Yamanishi T and Jian Q 2015 PloS One 10 e0138919
[39] Izhikevich E M, Gally J A and Edelman G M 2004 Cerebral Cortex 14 933
[40] Izhikevich E M and Hoppensteadt F 2004 Int. J. Bifur. Chaos 14 3847
[41] Izhikevich E M 2004 IEEE Trans. Neural Networks 15 1063
[42] Izhikevich E M 2010 Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 368 5061
[43] Gunasekaran H, Spigler G, Mazzoni A, Spigler G, MariaOddo C and Cataldo E 2019 Neurocomputing 350 237
[44] Wang G, Wu Y, Xiao F, Ye Z and Jia Y 2022 Physica A 598 127274
[45] Ding Q and Jia Y 2021 Chaos 31 053102
[46] Fang X, Duan S and Wang L 2022 Frontiers in Neuroscience 16 853010
[47] Chialvo D R 1995 Chaos, Solitons & Fractals 5 461
[48] Güémez J and Matías M A 1996 Physica D 96 334
[49] Abeles M 1991 UK: Cambridge University Press
[50] Yousry T A, Schmid U D, Alkadhi H, Schmidt D, Peraud A, Buettner A and Winkler P 1997 Brain: a Journal of Neurology 120 141
[51] Nelson A J and Chen R 2008 Cerebral Cortex 18 2341
[52] Guo Z H, Li Z J, Wang M J and Ma M L 2023 Chin. Phys. B 32 038701
[53] Peng C, Li Z, Wang M and Ma M 2023 Nonlinear Dyn. 111 16527
[54] Wang M, Peng J, Zhang X, Li Z and Lu H H C 2023 Nonlinear Dyn. 111 15397
[55] Uzuntarla M 2013 Phys. Lett. A 377 2585
[56] Muni S S, Rajagopal K, Karthikeyan A and Arun S 2022 Chaos, Solitons & Fractals 155 111759
[57] Yue Y, Liu L, Liu Y, Yu L and Chen Y 2017 Nonlinear Dyn. 90 2893
[58] Adhikari S P, Sah M P, Kim H and Chua L O 2013 IEEE Trans. Circ. Sys. I: Regular Papers 60 3008
[1] Quantum synchronization with correlated baths
Lei Li(李磊), Chun-Hui Wang(王春辉), Hong-Hao Yin(尹洪浩), Ru-Quan Wang(王如泉), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2024, 33(2): 020306.
[2] Symmetric Brownian motor subjected to Lévy noise
Kao Jia(贾考), Lan Hu(胡兰), and Linru Nie(聂林如). Chin. Phys. B, 2024, 33(2): 020502.
[3] Coherent optical frequency transfer via 972-km fiber link
Xue Deng(邓雪), Xiang Zhang(张翔), Qi Zang(臧琦), Dong-Dong Jiao(焦东东), Dan Wang(王丹), Jie Liu(刘杰), Jing Gao(高静), Guan-Jun Xu (许冠军), Rui-Fang Dong(董瑞芳), Tao Liu(刘涛), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2024, 33(2): 020602.
[4] Dynamical behavior of memristor-coupled heterogeneous discrete neural networks with synaptic crosstalk
Minglin Ma(马铭磷), Kangling Xiong(熊康灵), Zhijun Li(李志军), and Shaobo He(贺少波). Chin. Phys. B, 2024, 33(2): 028706.
[5] Majorana noise model and its influence on the power spectrum
Shumeng Chen(陈书梦), Sifan Ding(丁思凡), Zhen-Tao Zhang(张振涛), and Dong E. Liu(刘东). Chin. Phys. B, 2024, 33(1): 017101.
[6] Sharing quantum nonlocality in the noisy scenario
Shu-Yuan Yang(杨舒媛), Jin-Chuan Hou(侯晋川), and Kan He(贺衎). Chin. Phys. B, 2024, 33(1): 010302.
[7] A step to the decentralized real-time timekeeping network
Fangmin Wang(王芳敏), Yufeng Chen(陈雨锋), Jianhua Zhou(周建华), Yuting Lin(蔺玉亭), Jun Yang(杨军), Bo Wang(王波), and Lijun Wang(王力军). Chin. Phys. B, 2024, 33(1): 010702.
[8] Paradoxical roles of inhibitory autapse and excitatory synapse in formation of counterintuitive anticipated synchronization
Xue-Li Ding(丁学利), Hua-Guang Gu(古华光), Yu-Ye Li(李玉叶), and Yan-Bing Jia(贾雁兵). Chin. Phys. B, 2023, 32(8): 088701.
[9] Vibrational resonance in globally coupled bistable systems under the noise background
Jiangling Liu(刘江令), Chaorun Li(李朝润), Hailing Gao(高海玲), and Luchun Du(杜鲁春). Chin. Phys. B, 2023, 32(7): 070502.
[10] Stability and multistability of synchronization in networks of coupled phase oscillators
Yun Zhai(翟云), Xuan Wang(王璇), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060503.
[11] Synchronization-desynchronization transitions in networks of circle maps with sinusoidal coupling
Yun Zhai(翟云), Jinghua Xiao(肖井华), and Zhigang Zheng(郑志刚). Chin. Phys. B, 2023, 32(6): 060505.
[12] A novel fractional-order hyperchaotic complex system and its synchronization
Mengxin Jin(金孟鑫), Kehui Sun(孙克辉), and Shaobo He(贺少波). Chin. Phys. B, 2023, 32(6): 060501.
[13] Synchronization of stochastic complex networks with time-delayed coupling
Duolan(朵兰), Linying Xiang(项林英), and Guanrong Chen(陈关荣). Chin. Phys. B, 2023, 32(6): 060502.
[14] Detecting physical laws from data of stochastic dynamical systems perturbed by non-Gaussian α-stable Lévy noise
Linghongzhi Lu(陆凌弘志), Yang Li(李扬), and Xianbin Liu(刘先斌). Chin. Phys. B, 2023, 32(5): 050501.
[15] Synchronization coexistence in a Rulkov neural network based on locally active discrete memristor
Ming-Lin Ma(马铭磷), Xiao-Hua Xie(谢小华), Yang Yang(杨阳), Zhi-Jun Li(李志军), and Yi-Chuang Sun(孙义闯). Chin. Phys. B, 2023, 32(5): 058701.
No Suggested Reading articles found!