Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 100502    DOI: 10.1088/1674-1056/adde39
GENERAL Prev   Next  

Dynamical behavior of ring-star neural networks with small-world characteristics

Minglin Ma(马铭磷)1, Zhiyi Yuan(袁芷依)1, Umme Kalsoom2, Weizheng Deng(邓为政)1, and Shaobo He(贺少波)1,†
1 School of Automation and Electronic Information, Xiangtan University, Xiangtan 411105, China;
2 Department of Computer Science University of Narowal, Pakistan
Abstract  This paper proposes a ring-star neural network with small-world characteristics (RS-SWNN) based on the classical ring-star network, and combines the Izhikevich neuron model. RS-SWNN incorporates small-world characteristics, better mimicking the non-uniform connectivity of biological neural networks. According to the different coupling strength settings of $D_{\rm ring}$ and $D_{\rm star}$, the dynamical behavior of the network is studied, and the synchronicity differences of the network under different coupling strengths are revealed. In addition, a discrete memristor is used to simulate the effects of electromagnetic radiation. The modulation effects of varying radiation intensities on the network synchronization are further analyzed. The study shows that the electromagnetic radiation effect significantly impacts the neuronal synchronization behavior, especially in its modulation of network synchronization under varying coupling strengths. Numerical simulation is carried out using MATLAB software, and the corresponding results are obtained.
Keywords:  Izhikevich neurons      memristor      synchronization      electromagnetic radiation  
Received:  06 May 2025      Revised:  23 May 2025      Accepted manuscript online:  29 May 2025
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  87.85.dq (Neural networks)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.90.+m (Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)  
Fund: This work was supported by the Key Projects of Hunan Provincial Department of Education (Grant No. 23A0133) and the National Natural Science Foundation of China (Grant No. 62171401).
Corresponding Authors:  Shaobo He     E-mail:  heshaobo@xtu.edu.cn

Cite this article: 

Minglin Ma(马铭磷), Zhiyi Yuan(袁芷依), Umme Kalsoom, Weizheng Deng(邓为政), and Shaobo He(贺少波) Dynamical behavior of ring-star neural networks with small-world characteristics 2025 Chin. Phys. B 34 100502

[1] Yuste R, Cossart R and Yaksi E 2024 Neuron 112 875
[2] Bashir F, Alzahrani A, Abbas H and Zahoor F 2025 ACS Applied Electronic Materials 7 1329
[3] He S B, Peng Y, Wang H, Li C and Ma M 2025 Nonlinear Dyn.
[4] Hodgkin A L and Huxley A F 1952 The Journal of Physiology 117 500
[5] Izhikevich E M 2003 IEEE Transactions on Neural Networks 14 1569
[6] Kim J, Choi Y I, Sohn J W, Kim S P and Jung S J 2023 Experimental Neurobiology 32 157
[7] Vivekanandhan G, Hamarash I I, Ali Ali A M, He S and Sun K 2022 Euro. Phys. J. Spec. Top. 231 4017
[8] Aristides R P and Cerdeira H A 2024 Phys. Rev. E 109 044213
[9] Faci-Lázaro S, Soriano J, Mazo J J and Gómez-Gardeñes J 2023 Chaos, Solitons & Fractals 172 113547
[10] Chua L 2003 IEEE Transactions on Circuit Theory 18 507
[11] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[12] Wan Q, Yang Q, Liu T, Chen C and Shen K 2024 Chaos, Solitons & Fractals 189 115584
[13] Qin M, Lai Q, Fortuna L and Zhao X W 2025 Nonlinear Dyn. 113 17095
[14] Zhang S,Wang C, Zhang H and Lin H 2024 Chaos, Solitons & Fractals 186 115191
[15] Luo D, Wang C, Deng Q and Sun Y 2025 Nonlinear Dyn. 113 5811
[16] Yang F, Ren G and Tang J 2023 Nonlinear Dyn. 111 21917
[17] Lai Q and Yang L 2023 Chaos, Solitons & Fractals 174 113807
[18] Kong X, Yu F, YaoW, Cai S, Zhang J and Lin H 2024 Neural Networks 171 85
[19] Vignesh D, Ma J and Banerjee S 2024 Neurocomputing 564 126961
[20] Yu F, He S, Yao W, Cai S and Xu Q 2025 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
[21] Wang H, Chen H, Sun K, Zhu W and Yao Z 2025 Nonlinear Dyn. 113 10365
[22] Deng Q, Wang C, Sun Y, Deng Z and Yang G 2024 IEEE Transactions on Circuits and Systems I: Regular Papers. 72 300
[23] Yu F, Zhang S, Su D, Wu Y, Gracia Y M and Yin H 2025 Fractal and Fractional 9 115
[24] Lai Q, Yang L, Hu G, Guan Z H and Iu H H C 2024 IEEE Transactions on Cybernetics 54 4039
[25] Paprocki B, Pregowska A and Szczepanski J 2024 IEEE Access 12 42701
[26] Bashir F, Alzahrani A, Abbas H and Zahoor F 2025 ACS Applied Electronic Materials 7 1329
[27] Gökgöz B, Gül F and Aydın T 2024 Concurrency and Computation: Practice and Experience 36 e7997
[28] Chen C, Min F, Zhang Y and Bao H 2023 Chaos, Solitons & Fractals 167 113068
[29] Yuan Z, Wu Y, Ou C, Zhong P, Zhao X and Ma M 2025 Chinese Journal of Physics 94 108
[30] Farrera-Megchun A, Padilla-Longoria P, Santos G J E, Espinal- Enríquez J and Bernal-Jaquez R 2024 Chaos, Solitons & Fractals 187 115461
[31] Zhang J, Bao H, Gu J, Chen M and Bao B 2024 Chaos, Solitons & Fractals 185 115157
[32] An X, Jiang L, Xiong L, Zhang J and Li X 2024 Nonlinear Dyn. 112 16389
[33] Liao Z, Ouyang J and Ma M 2025 Nonlinear Dyn. 113 12151
[34] Tang J X, Wu Y L, Ou C Y, Zhong P, Zhao X and Ma M L 2025 Integration 102 102387
[35] Prasina A, Pandi V S, NancyW, Thilagam K, Veena K and Muniyappan A 2025 Applied Mathematics and Computation 489 129163
[36] Seoane J M, Bashkirtseva I, Ryashko L and Sanjuán M A F 2024 arXiv:2407.18922 [q-bio.NC]
[37] Yan Y, Liu G, Cai H, Wu E Q, Cai J, Cheok A D, Liu N, Li T and Fan Z 2024 Neurocomputing 599 128098)
[38] Chauhan K, Neiman A B and Tass P A 2024 PLoS Computational Biology 20 e1012261
[39] Zhang J and Li Z J 2024 Nonlinear Dyn. 112 6647
[40] Ma M L and Lu Y P 2024 Chaos 34 033116
[41] Njitacke Z T, Tsafack N, Ramakrishnan B, Rajagopal K, Kengne J and Awrejcewicz J 2021 Chaos, Solitons & Fractals 153 111577
[42] Muni S S, Rajagopal K, Karthikeyan A and Arun S 2022 Chaos, Solitons & Fractals 155 111759
[43] Yang H, Tian S, Zhu H and Xu G 2023 Journal of Biomedical Engineering 40 859
[1] Effects of noise on synchronization in simplicial complexes
Linying Xiang(项林英), Shuwei Yao(姚姝玮), Yining Chen(陈艺宁), Ruitong Yan(闫锐桐), and Ruya Xia(夏儒雅). Chin. Phys. B, 2025, 34(7): 070503.
[2] Optimal synchronization of higher-order Kuramoto model on hypergraphs
Chong-Yang Wang(王重阳), Bi-Yun Ji(季碧芸), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2025, 34(7): 070502.
[3] Synchronous dynamics of robotic arms driven by Chua circuits
Guoping Sun(孙国平), Mingxin Xu(许明鑫), Guoqiang Jin(金国强), and Xufeng Wang(王旭峰). Chin. Phys. B, 2025, 34(6): 060501.
[4] Resonant tunneling diode cellular neural network with memristor coupling and its application in police forensic digital image protection
Fei Yu(余飞), Dan Su(苏丹), Shaoqi He(何邵祁), Yiya Wu(吴亦雅), Shankou Zhang(张善扣), and Huige Yin(尹挥戈). Chin. Phys. B, 2025, 34(5): 050502.
[5] A novel non-autonomous hyperchaotic map based on discrete memristor parallel connection
Weiping Wu(吴伟平), Mengjiao Wang(王梦蛟), and Qigui Yang(杨启贵). Chin. Phys. B, 2025, 34(5): 050503.
[6] Study and circuit design of stochastic resonance system based on memristor chaos induction
Qi Liang(梁琦), Wen-Xin Yu(于文新), and Qiu-Mei Xiao(肖求美). Chin. Phys. B, 2025, 34(4): 040502.
[7] Finite time hybrid synchronization of heterogeneous duplex complex networks via time-varying intermittent control
Cheng-Jun Xie(解成俊) and Xiang-Qing Lu(卢向清). Chin. Phys. B, 2025, 34(4): 040601.
[8] Condensation and criticality of eigen microstates of phase fluctuations in Kuramoto model
Ning-Ning Wang(王宁宁), Qing Yao(姚卿), Ying Fan(樊瑛), Zeng-Ru Di(狄增如), and Xiao-Song Chen(陈晓松). Chin. Phys. B, 2025, 34(10): 100501.
[9] A physical memristor model for Pavlovian associative memory
Jiale Lu(卢家乐), Haofeng Ran(冉皓丰), Dirui Xie(谢頔睿), Guangdong Zhou(周广东), and Xiaofang Hu(胡小方). Chin. Phys. B, 2025, 34(1): 018703.
[10] Event-based nonfragile state estimation for memristive recurrent neural networks with stochastic cyber-attacks and sensor saturations
Xiao-Guang Shao(邵晓光), Jie Zhang(张捷), and Yan-Juan Lu(鲁延娟). Chin. Phys. B, 2024, 33(7): 070203.
[11] Proposal for a realtime Einstein-synchronization-defined satellite virtual clock
Chenhao Yan(严晨皓), Xueyi Tang(汤雪逸), Shiguang Wang(王时光), Lijiaoyue Meng(孟李皎悦), Haiyuan Sun(孙海媛), Yibin He(何奕彬), and Lijun Wang(王力军). Chin. Phys. B, 2024, 33(7): 070601.
[12] Effects of asymmetric coupling and boundary on the dynamic behaviors of a random nearest neighbor coupled system
Ling Xu(徐玲) and Lei Jiang(姜磊). Chin. Phys. B, 2024, 33(6): 060503.
[13] One memristor-one electrolyte-gated transistor-based high energy-efficient dropout neuronal units
Yalin Li(李亚霖), Kailu Shi(时凯璐), Yixin Zhu(朱一新), Xiao Fang(方晓), Hangyuan Cui(崔航源), Qing Wan(万青), and Changjin Wan(万昌锦). Chin. Phys. B, 2024, 33(6): 068401.
[14] Dynamics and synchronization of neural models with memristive membranes under energy coupling
Jingyue Wan(万婧玥), Fuqiang Wu(吴富强), Jun Ma(马军), and Wenshuai Wang(汪文帅). Chin. Phys. B, 2024, 33(5): 050504.
[15] Synchronization and firing mode transition of two neurons in a bilateral auditory system driven by a high-low frequency signal
Charles Omotomide Apata, Yi-Rui Tang(唐浥瑞), Yi-Fan Zhou(周祎凡), Long Jiang(蒋龙), and Qi-Ming Pei(裴启明). Chin. Phys. B, 2024, 33(5): 058704.
No Suggested Reading articles found!