Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 100303    DOI: 10.1088/1674-1056/adf4aa
GENERAL Prev   Next  

Exact quantum algorithm for unit commitment optimization based on partially connected quantum neural networks

Jian Liu(刘键)2,†, Xu Zhou(周旭)1,3,6,†,‡, Zhuojun Zhou(周卓俊)2, and Le Luo(罗乐)1,4,5
1 School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082, China;
2 QUDOOR Co., Ltd., Hefei 230000, China;
3 QUDOOR Co., Ltd., Beijing 100089, China;
4 Shenzhen Research Institute of Sun Yat-Sen University, Shenzhen 518057, China;
5 Guangdong Provincial Key Laboratory of Quantum Metrology and Sensing, Sun Yat-Sen University, Zhuhai 519082, China;
6 Yangtze Delta Industrial Innovation Center of Quantum Science and Technology, Suzhou 215000, China
Abstract  The quantum hybrid algorithm has recently become a very promising and speedy method for solving larger-scale optimization problems in the noisy intermediate-scale quantum (NISQ) era. The unit commitment (UC) problem is a fundamental problem in the field of power systems that aims to satisfy the power balance constraint with minimal cost. In this paper, we focus on the implementation of the UC solution using exact quantum algorithms based on the quantum neural network (QNN). This method is tested with a ten-unit system under the power balance constraint. In order to improve computing precision and reduce network complexity, we propose a knowledge-based partially connected quantum neural network (PCQNN). The results show that exact solutions can be obtained by the improved algorithm and that the depth of the quantum circuit can be reduced simultaneously.
Keywords:  quantum computing      quantum algorithm      unit commitment      quantum neural network      noisy intermediate-scale quantum era  
Received:  02 December 2024      Revised:  14 July 2025      Accepted manuscript online:  28 July 2025
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Lx (Quantum computation architectures and implementations)  
  88.50.Mp (Electricity generation, grid integration from wind)  
  45.10.Db (Variational and optimization methods)  
Fund: This work was supported in part by the China Postdoctoral Science Foundation (Grant No. 2023M740874).
Corresponding Authors:  Xu Zhou     E-mail:  zhoux359@mail.sysu.edu.cn

Cite this article: 

Jian Liu(刘键), Xu Zhou(周旭), Zhuojun Zhou(周卓俊), and Le Luo(罗乐) Exact quantum algorithm for unit commitment optimization based on partially connected quantum neural networks 2025 Chin. Phys. B 34 100303

[1] Cheng C P, Liu C W and Liu C C 2000 IEEE Transactions on Power Systems 15 707
[2] Haoyong C, Kaoshe Z and Xifan W 1999 Proceedings-Chinese Society of Electrical Engineering 19 9
[3] Moussouni F, Tran T, Brisset S and Brochet P 2007 Exhaustive Enumeration (EE) method, EC Lille, France
[4] Burns R M 1975 Proc. IEEE Power Eng. Soc. Summer Meeting
[5] Zhuang F and Galiana F D 1988 IEEE Transactions on Power Systems 3 763
[6] Kazarlis S A, Bakirtzis A and Petridis V 1996 IEEE Transactions on Power Systems 11 83
[7] Cerezo M, Arrasmith A, Babbush R, Benjamin S C, Endo S, Fujii K, McClean J R, Mitarai K, Yuan X, Cincio L, et al. 2021 Nat. Rev. Phys. 3 625
[8] Li Y, Hu J, Zhang X M, Song Z and Yung M H 2019 Advanced Theory and Simulations 2 1800182
[9] Farhi E and Harrow A W 2016 arXiv:1602.07674
[10] Li W, Lu Z D and Deng D L 2022 SciPost Physics Lecture Notes 061
[11] Kwak Y, Yun W J, Jung S and Kim J 2021 Twelfth International Conference on Ubiquitous and Future Networks (ICUFN) (IEEE) pp. 413- 416
[12] Wang S, Wang K H, Cheng T, Zhao R S, Ma H Y and Guo S 2024 Chin. Phys. B 33 060310
[13] Xu J, Chen X G, et al. 2022 Chin. Phys. B 31 080304
[14] Wang L J, Lin J Y and Wu S 2022 Chin. Phys. Lett. 39 050301
[15] Koretsky S, Gokhale P, Baker J M, Viszlai J, Zheng H, Gurung N, Burg R, Paaso E A, Khodaei A, Eskandarpour R, et al. 2021 IEEE International Conference on Quantum Computing and Engineering (QCE) (IEEE) pp. 181-187
[16] Mahroo R and Kargarian A 2022 IEEE Texas Power and Energy Conference (TPEC) (IEEE) pp. 1-5
[17] Stein J, Jojo J, Farea A, Bucher D, Altmann P and Linnhoff-Popien C 2023 arXiv:2305.08482
[18] Nikmehr N, Zhang P and Bragin M A 2022 IEEE Transactions on Power Systems 37 3592
[19] Yang M, Gao F,Wu G, Gong B, Cao H and Shuang F 2023 A quantumaided algorithm for unit commitment problems 2023 42
[20] Petros E, Samuel C and Spyros C 2024 arXiv:2404.10693
[21] Elizondo D and Fiesler E 1997 International Journal of Neural Systems 8 535
[22] Shaydulin R, Li C, Chakrabarti S, DeCross M, Herman D, Kumar N, Larson J, Lykov D, Minssen P, Sun Y, et al. 2024 Science Advances 10 eadm6761
[23] Cui L, Xu Q, Han Z Y and Xu X 2012 Chin. Phys. Lett. 29 037701
[24] Batı M and Ertaş M M 2025 Physica A 658 130268
[25] Selvakumar K, Vijayakumar K and Boopathi C S 2017 Appl. Sci. 7 1127
[26] Sim S, Johnson P D and Aspuru-Guzik A 2019 Advanced Quantum Technologies 2 1900070
[1] Distributed quantum circuit partitioning and optimization based on combined spectral clustering and search tree strategies
Zilu Chen(陈子禄), Zhijin Guan(管致锦), Shuxian Zhao(赵书娴), and Xueyun Cheng(程学云). Chin. Phys. B, 2025, 34(5): 050305.
[2] Planar: A software for exact decoding quantum error correction codes with planar structure
Dongyang Feng(冯东阳), Hanyan Cao(曹涵彦), and Pan Zhang(张潘). Chin. Phys. B, 2025, 34(5): 050311.
[3] RF detection of split-gate modes in Si-MOS quantum dots
Ning Chu(楚凝), Sheng-Kai Zhu(祝圣凯), Ao-Ran Li(李傲然), Chu Wang(王储), Wei-Zhu Liao(廖伟筑), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2025, 34(4): 040303.
[4] All-microwave CZ gate based on fixed-frequency driven coupler
Wanpeng Gao(高万鹏), Xiaoliang He(何潇梁), Zhengqi Niu(牛铮琦), Daqiang Bao(包大强), Kuang Liu(刘匡), Junfeng Chen(陈俊锋), Zhen Wang(王镇), and Z. R. Lin(林志荣). Chin. Phys. B, 2025, 34(4): 040304.
[5] Robust quantum gate optimization with first-order derivatives of ion-phonon and ion-ion couplings in trapped ions
Jing-Bo Wang(汪景波). Chin. Phys. B, 2025, 34(4): 040302.
[6] Delayed-measurement one-way quantum computing on cloud quantum computer
Zhi-Peng Yang(杨智鹏), Yu-Ran Zhang(张煜然), Fu-Li Li(李福利), and Heng Fan(范桁). Chin. Phys. B, 2024, 33(9): 090304.
[7] A family of quantum von Neumann architecture
Dong-Sheng Wang(王东升). Chin. Phys. B, 2024, 33(8): 080302.
[8] Development of 400-μW cryogen-free dilution refrigerators for quantum experiments
Xiang Guan(关翔), Jie Fan(樊洁), Yong-Bo Bian(边勇波), Zhi-Gang Cheng(程智刚), and Zhong-Qing Ji(姬忠庆). Chin. Phys. B, 2024, 33(7): 070701.
[9] Design of a novel hybrid quantum deep neural network in INEQR images classification
Shuang Wang(王爽), Ke-Han Wang(王柯涵), Tao Cheng(程涛), Run-Sheng Zhao(赵润盛), Hong-Yang Ma(马鸿洋), and Shuai Guo(郭帅). Chin. Phys. B, 2024, 33(6): 060310.
[10] Electric field dependence of spin qubit in a Si-MOS quantum dot
Rong-Long Ma(马荣龙), Ming Ni(倪铭), Yu-Chen Zhou(周雨晨), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Di Liu(刘頔), Gang Luo(罗刚), Gang Cao(曹刚), Hai-Ou Li(李海欧), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(6): 060312.
[11] Quantum algorithm for minimum dominating set problem with circuit design
Haoying Zhang(张皓颖), Shaoxuan Wang(王绍轩), Xinjian Liu(刘新建), Yingtong Shen(沈颖童), and Yukun Wang(王玉坤). Chin. Phys. B, 2024, 33(2): 020310.
[12] Simulation of optimal work extraction for quantum systems with work storage
Peng-Fei Song(宋鹏飞) and Dan-Bo Zhang(张旦波). Chin. Phys. B, 2024, 33(2): 020312.
[13] Automatic architecture design for distributed quantum computing
Ting-Yu Luo(骆挺宇), Yu-Zhen Zheng(郑宇真), Xiang Fu(付祥), and Yu-Xin Deng(邓玉欣). Chin. Phys. B, 2024, 33(12): 120302.
[14] Variational quantum simulation of the quantum critical regime
Zhi-Quan Shi(石志全), Xu-Dan Xie(谢旭丹), and Dan-Bo Zhang(张旦波). Chin. Phys. B, 2023, 32(8): 080305.
[15] Variational quantum semi-supervised classifier based on label propagation
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Chong-Qiang Ye(叶崇强). Chin. Phys. B, 2023, 32(7): 070309.
No Suggested Reading articles found!