|
Special Issue:
Featured Column — DATA PAPER
|
|
|
|
HTSC-2025: A benchmark dataset of ambient-pressure high-temperature superconductors for AI-driven critical temperature prediction |
| Xiao-Qi Han(韩小琪)1,2, Ze-Feng Gao(高泽峰)1,2,†, Xin-De Wang(王馨德)1,2, Zhenfeng Ouyang(欧阳振峰)1,2, Peng-Jie Guo(郭朋杰)1,2, and Zhong-Yi Lu(卢仲毅)1,2,3 |
1 School of Physics and Beijing Key Laboratory of Opto-electronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China; 2 Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China; 3 Hefei National Laboratory, Hefei 230088, China |
|
|
|
|
Abstract The discovery of high-temperature superconducting materials holds great significance for human industry and daily life. In recent years, research on predicting superconducting transition temperatures using artificial intelligence (AI) has gained popularity, with most of these tools claiming to achieve remarkable accuracy. However, the lack of widely accepted benchmark datasets in this field has severely hindered fair comparisons between different AI algorithms and impeded further advancement of these methods. In this work, we present HTSC-2025, an ambient-pressure high-temperature superconducting benchmark dataset. This comprehensive compilation encompasses theoretically predicted superconducting materials discovered by theoretical physicists from 2023 to 2025 based on BCS superconductivity theory, including the renowned $X_2Y$H$_6$ system, perovskite $MX$H$_3$ system, $M_3X$H$_8$ system, cage-like BCN-doped metal atomic systems derived from LaH$_{10}$ structural evolution, and two-dimensional honeycomb-structured systems evolving from MgB$_2$. In addition, we note a range of approaches inspired by physical intuition for designing high-temperature superconductors, such as hole doping, the introduction of light elements to form strong covalent bonds, and the tuning of spin-orbit coupling. The dataset presented in this paper is openly available at ScienceDB. The HTSC-2025 benchmark has been open-sourced on Hugging Face at https://huggingface.co/datasets/xiao-qi/HTSC-2025 and will be continuously updated, while the Electronic Laboratory for Material Science platform is available at https://in.iphy.ac.cn/eln/link.html#/124/V2s4.
|
Received: 10 June 2025
Revised: 14 July 2025
Accepted manuscript online: 16 July 2025
|
|
PACS:
|
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
| |
07.05.Mh
|
(Neural networks, fuzzy logic, artificial intelligence)
|
| |
84.35.+i
|
(Neural networks)
|
| |
05.70.Jk
|
(Critical point phenomena)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62476278, 12434009, and 12204533), the National Key R&D Program of China (Grant No. 2024YFA1408601), and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302402). |
Corresponding Authors:
Ze-Feng Gao
E-mail: zfgao@ruc.edu.cn
|
Cite this article:
Xiao-Qi Han(韩小琪), Ze-Feng Gao(高泽峰), Xin-De Wang(王馨德), Zhenfeng Ouyang(欧阳振峰), Peng-Jie Guo(郭朋杰), and Zhong-Yi Lu(卢仲毅) HTSC-2025: A benchmark dataset of ambient-pressure high-temperature superconductors for AI-driven critical temperature prediction 2025 Chin. Phys. B 34 100301
|
[1] Onnes H K 1911 Commun. Theor. Phys. 120 [2] arXiv https://arxiv.org/ [3] Coombs T A, Wang Q, Shah A, Hu J, Hao L, Patel I, Wei H, Wu Y, Coombs T and Wang W 2024 Nat. Rev. Electr. Eng. 1 788 [4] Yao C and Ma Y 2021 iScience 24 102541 [5] Pustogow A, Luo Y, Chronister A, et al. 2019 Nature 574 72 [6] Bruzzone P, Fietz W H, Minervini J V, Novikov M, Yanagi N, Zhai Y and Zheng J 2018 Nucl. Fusion 58 103001 [7] Han X Q,Wang X D, Xu M Y, Feng Z, Yao BW, Guo P J, Gao Z F and Lu Z Y 2025 Chin. Phys. Lett. 42 027403 [8] Choudhary K and Garrity K 2022 NPJ Comput. Mater. 8 244 [9] Choudhary K and DeCost B 2021 NPJ Comput. Mater. 7 185 [10] Cerqueira T F T, Fang YW, Errea I, Sanna A and MarquesMA L 2024 Adv. Funct. Mater. 34 2404043 [11] Han X Q, Ouyang Z F, Guo P J, Sun H, Gao Z F and Lu Z Y 2024 Chin. Phys. Lett. 42 047301 [12] Ouyang Z F, Yao B W, Han X Q, Guo P J, Gao Z F and Lu Z Y 2025 Phys. Rev. B 111 L140501 [13] Gibson J B, Hire A C, Dee P M, Barrera O, Geisler B, Hirschfeld P J and Hennig R G 2025 npj Comput. Mater. 11 7 [14] Li J, Fang W Q, Jin S J, Zhang T D, Wu Y L, Xu X D, Liu Y and Yao D X 2025 AI Sci. 1 015001 [15] Han X Q, Guo P J, Gao Z F, Sun H and Lu Z Y 2025 arXiv:2505.09203 [cond-mat.mtrl-sci] [16] Abramson J, Adler J and Dunger J 2024 Nature 630 493 [17] Dolui K, Conway L J, Heil C, Strobel T A, Prasankumar R P and Pickard C J 2024 Phys. Rev. Lett. 132 166001 [18] Li B, Fan Y X, Zhai J J, Cao Z S, Zhu C, Cheng J, Liu S L and Shi Z X 2025 J. Phys. Chem. C 129 7098 [19] Liu S M, Shi J J, He Y, Tian C, Zhu Y H, Wang X Q and Zhong H X 2024 Adv. Funct. Mater. 34 2315386 [20] Tian C, He Y, Zhu Y H, Du J, Liu S M, Guo W H, Zhong H X, Lu J, Wang X Q and Shi J J 2024 Adv. Funct. Mater. 34 2304919 [21] He Y, Lu J, Wang X Q and Shi J J 2023 Phys. Rev. B 108 054515 [22] Cerqueira T F T, Sanna A and Marques M A L 2024 Adv. Mater. 36 2307085 [23] Wines D and Choudhary K 2024 Mater. Futures 3 025602 [24] Li B, Zhu C, Zhai J J, Yin C H, Fan Y X, Cheng J, Liu S L and Shi Z X 2024 Phys. Rev. B 110 214504 [25] Quan H, Shi X B, Han Y L, Zhang P and Wang B T 2025 Phys. Rev. B 111 134509 [26] Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y M 2012 Proc. Natl. Acad. Sci. USA 109 6463 [27] Ma L, Wang K, Xie Y, Yang X, Wang Y Y, Zhou M, Liu H Y, Yu X H, Zhao Y S, Wang H B, Liu G T and Ma Y M 2022 Phys. Rev. Lett. 128 167001 [28] Li Y W, Hao J, Liu H Y, Tse J S, Wang Y C and Ma Y M 2015 Sci. Rep. 5 9948 [29] Troyan I A, Semenok D V, Kvashnin A G, Sadakov A V, Sobolevskiy O A, Pudalov V M and Oganov A R 2021 Adv. Mater. 33 2006832 [30] Chen W H, Semenok D V, Huang X L, Shu H Y, Li X, Duan D F, Cui T and Oganov A R 2021 Phys. Rev. Lett. 127 117001 [31] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001 [32] Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M and Eremets M I 2019 Nature 569 528 [33] Li B, Fan Y X, Yin C H, Zhai J J, Zhu C, Cao Z S, Cheng J and Liu S L 2025 Phys. Rev. B 111 014510 [34] Ding H B, Feng Y J, Jiang M J, Tian H L, Zhong G H, Yang C L, Chen X J and Lin H Q 2022 Phys. Rev. B 106 104508 [35] Li X, Yong X, Wu M, Lu S Y, Liu H Y, Meng S, Tse J S and Li Y W 2019 J. Phys. Chem. Lett. 10 2554 [36] Duan Q Z, Zhan L H, Shen J Y, Zhong X and Lu C 2024 Phys. Rev. B 109 054505 [37] Geng N, Hilleke K P, Zhu L,Wang X Y, Strobel T A and Zurek E 2023 J. Am. Chem. Soc. 145 1696 [38] Tomassetti C R, Kafle G P, Marcial E T, Margine E R and Kolmogorov A N 2024 J. Mater. Chem. C 12 4870 [39] Chen C, Miao J Y, Zuo J N, He S and Lu C 2024 Phys. Rev. B 110 174514 [40] Jiang Q W, Chen L, Ma H, Li C D, Duan D F and Cui T 2025 Inorg. Chem. 64 400 [41] Di Cataldo S and Boeri L 2023 Phys. Rev. B 107 L060501 [42] Han Y L, Jiang K Y, Wang B T, Zhang P and Lu H Y 2025 Phys. Rev. B 111 094520 [43] Tomassetti C R, Gochitashvili D, Renskers C, Margine E R and Kolmogorov A N 2024 Phys. Rev. Mater. 8 114801 [44] Liu H D, Fu X P, Fu Z G, Lu H Y and Zhang P 2025 Phys. Rev. B 111 184502 [45] Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y and Akimitsu J 2001 Nature 410 63 [46] Singh S, Romero A H, Mella J D, Eremeev V, Muñoz E, Alexandrova A N, Rabe K M, Vanderbilt D and Muñoz F 2022 npj Quantum Mater. 7 37 [47] Jiang J J, Xue Y M, Zha L L, Yao S W, Wang B, Hu W J, Peng L, Shi T T, Chen J, Liu X L and Lin J 2025 J. Mater. Chem. C 13 9799 [48] Liu W Y, Wang X J, Li Y Q, Wei Y H, Zhong M M and Kuang M Q 2025 Supercond. Sci. Technol. 38 045024 [49] Jiang B, Luo X S, Sun Y, Zhong X, Lv J, Xie Y, Ma Y M and Liu H Y 2025 Phys. Rev. B 111 054505 [50] Wang X Y, Zhang C Q, Wang Z Y, Liu H Y, Lv J, Wang H, E W N and Ma Y M 2025 arXiv:2502.16558 [cond-mat.supr-con] [51] Wang V, Xu N, Liu J C, Tang G and Geng W T 2021 Comput. Phys. Commun. 267 108033 [52] Quantum ESPRESSO https://www.quantum-espresso.org/ [53] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [54] Hamann D R 2013 Phys. Rev. B 88 085117 [55] Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616 [56] Baroni S, de Gironcoli S, Dal Corso A and Giannozzi P 2001 Rev. Mod. Phys. 73 515 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|