Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(3): 030702    DOI: 10.1088/1674-1056/ad1c58
Special Issue: SPECIAL TOPIC — Post-Moore era: Materials and device physics
TOPICAL REVIEW—Post-Moore era: Materials and device physics Prev   Next  

Advances in neuromorphic computing: Expanding horizons for AI development through novel artificial neurons and in-sensor computing

Yubo Yang(杨玉波)1,3,†, Jizhe Zhao(赵吉哲)1,3,†, Yinjie Liu(刘胤洁)1,3,†, Xiayang Hua(华夏扬)1, Tianrui Wang(王天睿)1, Jiyuan Zheng(郑纪元)2, Zhibiao Hao(郝智彪)1,2, Bing Xiong(熊兵)1,2, Changzheng Sun(孙长征)1,2, Yanjun Han(韩彦军)1, Jian Wang(王健)1, Hongtao Li(李洪涛)1, Lai Wang(汪莱)1,2,‡, and Yi Luo(罗毅)1,2,§
1 Department of Electronic Engineering, Tsinghua University, Beijing 100084, China;
2 Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
Abstract  AI development has brought great success to upgrading the information age. At the same time, the large-scale artificial neural network for building AI systems is thirsty for computing power, which is barely satisfied by the conventional computing hardware. In the post-Moore era, the increase in computing power brought about by the size reduction of CMOS in very large-scale integrated circuits (VLSIC) is challenging to meet the growing demand for AI computing power. To address the issue, technical approaches like neuromorphic computing attract great attention because of their feature of breaking Von-Neumann architecture, and dealing with AI algorithms much more parallelly and energy efficiently. Inspired by the human neural network architecture, neuromorphic computing hardware is brought to life based on novel artificial neurons constructed by new materials or devices. Although it is relatively difficult to deploy a training process in the neuromorphic architecture like spiking neural network (SNN), the development in this field has incubated promising technologies like in-sensor computing, which brings new opportunities for multidisciplinary research, including the field of optoelectronic materials and devices, artificial neural networks, and microelectronics integration technology. The vision chips based on the architectures could reduce unnecessary data transfer and realize fast and energy-efficient visual cognitive processing. This paper reviews firstly the architectures and algorithms of SNN, and artificial neuron devices supporting neuromorphic computing, then the recent progress of in-sensor computing vision chips, which all will promote the development of AI.
Keywords:  neuromorphic computing      spiking neural network (SNN)      in-sensor computing      artificial intelligence  
Received:  19 September 2023      Revised:  27 December 2023      Accepted manuscript online:  09 January 2024
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Project supported in part by the National Key Research and Development Program of China (Grant No. 2021YFA0716400), the National Natural Science Foundation of China (Grant Nos. 62225405, 62150027, 61974080, 61991443, 61975093, 61927811, 61875104, 62175126, and 62235011), the Ministry of Science and Technology of China (Grant Nos. 2021ZD0109900 and 2021ZD0109903), the Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics and Tsinghua University Initiative Scientific Research Program.
Corresponding Authors:  Lai Wang, Yi Luo     E-mail:  wanglai@mail.tsinghua.edu.cn;luoy@tsinghua.edu.cn

Cite this article: 

Yubo Yang(杨玉波), Jizhe Zhao(赵吉哲), Yinjie Liu(刘胤洁), Xiayang Hua(华夏扬), Tianrui Wang(王天睿), Jiyuan Zheng(郑纪元), Zhibiao Hao(郝智彪), Bing Xiong(熊兵), Changzheng Sun(孙长征), Yanjun Han(韩彦军), Jian Wang(王健), Hongtao Li(李洪涛), Lai Wang(汪莱), and Yi Luo(罗毅) Advances in neuromorphic computing: Expanding horizons for AI development through novel artificial neurons and in-sensor computing 2024 Chin. Phys. B 33 030702

[1] Zhang C and Lu Y 2021 Journal of Industrial Information Integration 23 100224
[2] Marković D, Mizrahi A, Querlioz D and Grollier J 2020 Nat. Rev. Phys. 2 499
[3] Maass W 1997 Neural Networks 10 1659
[4] Tavanaei A, Ghodrati M, Kheradpisheh S R, Masquelier T and Maida A 2019 Neural Networks 111 47
[5] Wulfram Gerstner, Richard Kempter, J. Leo van Hemmen, Hermann Wagner 1996 Nature 383 76
[6] Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg A C and Fei-Fei L 2015 Int. J. Comput. Vis. 115 211
[7] Krizhevsky A, Sutskever I and Hinton G E 2017 Commun. ACM 60 84
[8] Hinton G, Deng L, Yu D, Dahl G E, Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath T N and Kingsbury B 2012 IEEE Signal Processing Magazine 29 82
[9] Girshick R, Donahue J, Darrell T and Malik J 2014 2014 IEEE Conference on Computer Vision and Pattern Recognition, June 24-27, 2014 Columbus, USA, p. 580
[10] Long J, Shelhamer E and Darrell T 2015 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 8-10, 2015, Boston, USA, p. 3431
[11] Girshick R 2015 2015 IEEE International Conference on Computer Vision, December 13-16, 2015, Santiago, Chile, p. 1440
[12] Ren S, He K, Girshick R and Sun J 2017 IEEE Transactions on Pattern Analysis and Machine Intelligence 39 1137
[13] He K, Gkioxari G, Dollár P and Girshick R 2017 2017 IEEE International Conference on Computer Vision, October 22-29, 2017, Venice, Italy, p. 2980
[14] He K, Zhang X, Ren S and Sun J 2016 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 26-July 1, 2016, Las Vegas, US, p. 770
[15] Szegedy C, Vanhoucke V, Ioffe S, Shlens J and Wojna Z 2016 2016 IEEE Conference on Computer Vision and Pattern Recognition, June 26-July 1, 2016, Las Vegas, USA, p. 2818
[16] Geirhos R, Michaelis C, Wichmann F A, Rubisch P, Bethge M and Brendel W 2019 arXiv: 1811.12231 [cs.CV]
[17] Manassi M, Liberman A, Chaney W and Whitney D 2017 Sci. Rep. 7 1971
[18] Fitzpatrick D 2000 Current Opinion in Neurobiology 10 438
[19] Pi S, Li C, Jiang H, Xia W, Xin H, Yang J J and Xia Q 2019 Nat. Nanotech. 14 35
[20] Wang Z, Joshi S, Savel'ev S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z, Wu Q, Barnell M, Li G L, Xin H L, Williams R S, Xia Q and Yang J J 2017 Nat. Mater. 16 101
[21] Merolla P A, Arthur J V, Alvarez-Icaza R, Cassidy A S, Sawada J, Akopyan F, Jackson B L, Imam N, Guo C, Nakamura Y, Brezzo B, Vo I, Esser S K, Appuswamy R, Taba B, Amir A, Flickner M D, Risk W P, Manohar R and Modha D S 2014 Science 345 668
[22] Hodgkin A L and Huxley A F 1952 The Journal of Physiology 117 500
[23] Gerstner W, Kistler W M, Naud R and Paninski L 2014 Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition (Cambridge: Cambridge University Press) p. 22
[24] Duan Q, Jing Z, Zou X, Wang Y, Yang K, Zhang T, Wu S, Huang R and Yang Y 2020 Nat. Commun. 11 3399
[25] Bortolotto Z A, Amici M, Anderson W W, Isaac J T R and Collingridge G L 2011 Current Protocols in Neuroscience 54 6
[26] Sweatt J D 1999 Learn. Mem. 6 399
[27] Frey U, Krug M, Reymann K G and Matthies H 1988 Brain Research 452 57
[28] Kelleher R J, Govindarajan A and Tonegawa S 2004 Neuron 44 59
[29] Emptage N J, Reid C A, Fine A and Bliss T V P 2003 Neuron 38 797
[30] Hebb D O 2005 The Organization of Behavior: A Neuropsychological Theory (Psychology Press) p. 45
[31] Izhikevich E M and Desai N S 2003 Neural Computation 15 1511
[32] Tibbetts P E 2013 The Quarterly Review of Biology 88 139
[33] Bear M, Connors B and Paradiso M A 2020 Neuroscience: Exploring the Brain, Enhanced Edition: Exploring the Brain, Enhanced Edition (Jones & Bartlett Learning) p. 54
[34] Zucker R S and Regehr W G 2002 Annual Review of Physiology 64 355
[35] Abbott L F and Regehr W G 2004 Nature 431 796
[36] Bi G and Poo M 2001 Annual Review of Neuroscience 24 139
[37] Tsodyks M V and Markram H 1997 Proc. Natl. Acad. Sci. USA 94 719
[38] Sjöström J and Gerstner W 2010 Scholarpedia 5 1362
[39] Zhang L I, Tao H W, Holt C E, Harris W A and Poo M 1998 Nature 395 37
[40] Allen C B, Celikel T and Feldman D E 2003 Nat. Neurosci. 6 291
[41] Gerstner W, Kempter R, van Hemmen J L and Wagner H 1996 Nature 383 76
[42] Kempter R, Gerstner W and van Hemmen J L 1999 Phys. Rev. E 59 4498
[43] Bohte S M, Kok J N and La Poutré H 2002 Neurocomputing 48 17
[44] Lee J H, Delbruck T and Pfeiffer M 2016 Frontiers in Neuroscience 10 508
[45] Shouval H, Wang S and Wittenberg G 2010 Frontiers in Computational Neuroscience 4 113
[46] Caporale N and Dan Y 2008 Annual Review of Neuroscience 31 25
[47] Cao Y, Chen Y and Khosla D 2015 Int. J. Comput. Vis. 113 54
[48] Diehl P U, Neil D, Binas J, Cook M, Liu S C and Pfeiffer M 2015 2015 International Joint Conference on Neural Networks, July 12-17, 2015, Killarney, Ireland p. 1
[49] Sengupta A, Ye Y, Wang R, Liu C and Roy K 2019 Frontiers in Neuroscience 13 95
[50] Zhang X, Wang W, Liu Q, Zhao X, Wei J, Cao R, Yao Z, Zhu X, Zhang F, Lv H, Long S and Liu M 2018 IEEE Electron Device Lett. 39 308
[51] Pickett M D, Medeiros-Ribeiro G and Williams R S 2013 Nat. Mater. 12 114
[52] Han J K, Yun S Y, Lee S W, Yu J M and Choi Y K 2022 Advanced Functional Materials 32 2204102
[53] Zhang Y, Mao G Q, Zhao X, Li Y, Zhang M, Wu Z, Wu W, Sun H, Guo Y, Wang L, Zhang X, Liu Q, Lv H, Xue K H, Xu G, Miao X, Long S and Liu M 2021 Nat. Commun. 12 7232
[54] Rao M, Tang H, Wu J, Song W, Zhang M, Yin W, Zhuo Y, Kiani F, Chen B, Jiang X, Liu H, Chen H Y, Midya R, Ye F, Jiang H, Wang Z, Wu M, Hu M, Wang H, Xia Q, Ge N, Li J and Yang J J 2023 Nature 615 823
[55] Baek K, Park S, Park J, Kim Y M, Hwang H and Oh S H 2017 Nanoscale 9 582
[56] Wang W, Fujita S and Wong S S 2009 IEEE Electron Device Lett. 30 763
[57] Wang W, Fujita S and Wong S S 2009 IEEE Electron Device Lett. 30 733
[58] Inoue I H, Yasuda S, Akinaga H and Takagi H 2008 Phys. Rev. B 77 035105
[59] Cao X, Li X, Gao X, Yu W, Liu X, Zhang Y, Chen L and Cheng X 2009 J. Appl. Phys. 106 073723
[60] Goux L, Lisoni J G, Wang X P, Jurczak M and Wouters D J 2009 IEEE Transactions on Electron Devices 56 2363
[61] Lim E and Ismail R 2015 Electronics 4 586
[62] Yang R 2020 Chin. Phys. B 29 097305
[63] Wang Z, Yin M, Zhang T, Cai Y, Wang Y, Yang Y and Huang R 2016 Nanoscale 8 14015
[64] Huang X, Wu H, Bin Gao, Sekar D C, Dai L, Kellam M, Bronner G, Deng N and Qian H 2016 Nanotechnology 27 395201
[65] Hao Z, Gao B, Xu M, Hu Q, Zhang W, Li X, Sun F, Tang J, Qian H and Wu H 2021 IEEE Electron Device Lett. 42 1276
[66] Zhao M, Gao B, Xi Y, Xu F, Wu H and Qian H 2019 IEEE Journal of the Electron Devices Society 7 1239
[67] Wang X H, Wu H, Gao B, Li X, Deng N and Qian H 2018 IEEE Electron Device Lett. 39 192
[68] Wu W, Wu H, Gao B, Deng N, Yu S and Qian H 2017 IEEE Electron Device Lett. 38 1019
[69] Li Y, Tang J, Gao B, Sun W, Hua Q, Zhang W, Li X, Zhang W, Qian H and Wu H 2020 Adv. Sci. 7 2002251
[70] Wang Z, Rao M, Midya R, Joshi S, Jiang H, Lin P, Song W, Asapu S, Zhuo Y, Li C, Wu H, Xia Q and Yang J J 2018 Advanced Functional Materials 28 1704862
[71] Liu S, Lu N, Zhao X, Xu H, Banerjee W, Lv H, Long S, Li Q, Liu Q and Liu M 2016 Advanced Materials 28 10623
[72] Le Gallo M and Sebastian A 2020 J. Phys. D: Appl. Phys. 53 213002
[73] Kato T and Tanaka K 2005 Jpn. J. Appl. Phys. 44 7340
[74] Pirovano A, Lacaita A L, Benvenuti A, Pellizzer F and Bez R 2004 IEEE Transactions on Electron Devices 51 452
[75] Loke D, Lee T H, Wang W J, Shi L P, Zhao R, Yeo Y C, Chong T C and Elliott S R 2012 Science 336 1566
[76] Rao F, Ding K, Zhou Y, Zheng Y, Xia M, Lv S, Song Z, Feng S, Ronneberger I, Mazzarello R, Zhang W and Ma E 2017 Science 358 1423
[77] Ding K, Wang J, Zhou Y, Tian H, Lu L, Mazzarello R, Jia C, Zhang W, Rao F and Ma E 2019 Science 366 210
[78] Zhu J, Zhang T, Yang Y and Huang R 2020 Appl. Phys. Rev. 7 011312
[79] Ma J, Ma J, Zhang Q, Peng R, Wang J, Liu C, Wang M, Li N, Chen M, Cheng X, Gao P, Gu L, Chen L Q, Yu P, Zhang J and Nan C W 2018 Nat. Nanotech. 13 947
[80] Luo J, Wu S, Huang Q, Huang R, Yu L, Liu T, Yang M, Fu Z, Liang Z, Chen L, Chen C and Liu S 2019 2019 IEEE International Electron Devices Meeting (IEDM), December 7-11, 2019 San Francisco, CA, USA p. 6
[81] Chanthbouala A, Garcia V, Cherifi R O, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur N D, Bibes M, Barthélémy A and Grollier J 2012 Nat. Mater. 11 860
[82] Wang W G, Li M, Hageman S and Chien C L 2012 Nat. Mater. 11 64
[83] Baek S C, Amin V P, Oh Y W, Go G, Lee S J, Lee G H, Kim K J, Stiles M D, Park B G and Lee K J 2018 Nat. Mater. 17 509
[84] Lequeux S, Sampaio J, Cros V, Yakushiji K, Fukushima A, Matsumoto R, Kubota H, Yuasa S and Grollier J 2016 Sci. Rep. 6 31510
[85] Ralph D C and Stiles M D 2008 J. Magn. Magn. Mater. 320 1190
[86] Parkin S S P, Kaiser C, Panchula A, Rice P M, Hughes B, Samant M and Yang S H 2004 Nat. Mater. 3 862
[87] Yuasa S, Nagahama T, Fukushima A, Suzuki Y and Ando K 2004 Nat. Mater. 3 868
[88] Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F and Ohno H 2010 Nat. Mater. 9 721
[89] Shulaker M M, Hills G, Park R S, Howe R T, Saraswat K, Wong H S P and Mitra S 2017 Nature 547 74
[90] Hsieh H Y and Tang K T 2012 IEEE Trans. Neural Netw. Learning Syst. 23 1065
[91] TermehYousefi A, Azhari S, Khajeh A, Hamidon M N and Tanaka H 2017 Materials Science and Engineering: C 77 1098
[92] Kim Y, Chortos A, Xu W, Liu Y, Oh J Y, Son D, Kang J, Foudeh A M, Zhu C, Lee Y, Niu S, Liu J, Pfattner R, Bao Z and Lee T W 2018 Science 360 998
[93] Wang W, Pedretti G, Milo V, Carboni R, Calderoni A, Ramaswamy N, Spinelli A S and Ielmini D 2018 Sci. Adv. 4 eaat4752
[94] Wang D, Shan H and Xin J 2018 Hearing Research 370 283
[95] Tan H, Zhou Y, Tao Q, Rosen J and Van Dijken S 2021 Nat. Commun. 12 1120
[96] Meng J, Wang T, Zhu H, Ji L, Bao W, Zhou P, Chen L, Sun Q Q and Zhang D W 2022 Nano Lett. 22 81
[97] Li C, Hu M, Li Y, Jiang H, Ge N, Montgomery E, Zhang J, Song W, Dávila N, Graves C E, Li Z, Strachan J P, Lin P, Wang Z, Barnell M, Wu Q, Williams R S, Yang J J and Xia Q 2018 Nat. Electron. 1 52
[98] Chu M, Kim B, Park S, Hwang H, Jeon M, Lee B H and Lee B G 2015 IEEE Transactions on Industrial Electronics 62 2410
[99] Valenzuela W, Saavedra A, Zarkesh-Ha P and Figueroa M 2022 Sensors 22 6538
[100] Nose A, Yamazaki T, Katayama H, Uehara S, Kobayashi M, Shida S, Odahara M, Takamiya K, Matsumoto S, Miyashita L, Watanabe Y, Izawa T, Muramatsu Y, Nitta Y and Ishikawa M 2018 Sensors 18 1313
[101] Shulaker M M, Hills G, Park R S, Howe R T, Saraswat K, Wong H-S P and Mitra S 2017 Nature 547 74
[102] Hirata T, Murata H, Arii T, Matsuda H, Yonemochi H, Tezuka Y and Tsunai S 2022 IEEE Open Journal of Circuits and Systems 3 311
[103] Wang F, Hu F, Dai M, Zhu S, Sun F, Duan R, Wang C, Han J, Deng W, Chen W, Ye M, Han S, Qiang B, Jin Y, Chua Y, Chi N, Yu S, Nam D, Chae S H, Liu Z and Wang Q J 2023 Nat. Commun. 14 1938
[104] Yu R, He L, Gao C, Zhang X, Li E, Guo T, Li W and Chen H 2022 Nat. Commun. 13 7019
[105] Lee D, Park M, Baek Y, Bae B, Heo J and Lee K 2022 Nat. Commun. 13 5223
[106] Seo S, Jo S H, Kim S, Shim J, Oh S, Kim J H, Heo K, Choi J W, Choi C, Oh S, Kuzum D, Wong H S P and Park J H 2018 Nat. Commun. 9 5106
[107] Tan H and van Dijken S 2023 Nat. Commun. 14 2169
[108] Yin L, Han C, Zhang Q, Ni Z, Zhao S, Wang K, Li D, Xu M, Wu H, Pi X and Yang D 2019 Nano Energy 63 103859
[109] Wang H, Zhao Q, Ni Z, Li Q, Liu H, Yang Y, Wang L, Ran Y, Guo Y, Hu W and Liu Y 2018 Advanced Materials 30 1803961
[110] Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J and Li R W 2019 ACS Nano 13 2634
[111] Jaafar A H, Gray R J, Verrelli E, O'Neill M, Kelly S M and Kemp N T 2017 Nanoscale 9 17091
[112] Tan H, Ni Z, Peng W, Du S, Liu X, Zhao S, Li W, Ye Z, Xu M, Xu Y, Pi X and Yang D 2018 Nano Energy 52 422
[113] Eginligil M, Cao B, Wang Z, Shen X, Cong C, Shang J, Soci C and Yu T 2015 Nat. Commun. 6 7636
[114] Choi W, Cho M Y, Konar A, Lee J H, Cha G-B, Hong S C, Kim S, Kim J, Jena D, Joo J and Kim S 2012 Advanced Materials 24 5832
[115] Zhou F, Zhou Z, Chen J, Choy T H, Wang J, Zhang N, Lin Z, Yu S, Kang J, Wong H-S P and Chai Y 2019 Nat. Nanotechnol. 14 776
[116] Zhang Z, Zhao X, Zhang X, Hou X, Ma X, Tang S, Zhang Y, Xu G, Liu Q and Long S 2022 Nat. Commun. 13 6590
[117] Wu N 2018 Sci. China Inf. Sci. 61 060421
[118] Jing C O, Zhao Z, Nan Q I, Liu L and Wu N J 2019 Acta Photonica Sinica 48 0704001
[119] Ara Shawkat M S, Sayyarparaju S, McFarlane N and Rose G S 2020 2020 IEEE 63rd International Midwest Symposium on Circuits and Systems, August 9-12, 2020, Springfield, MA, USA, p. 377
[1] Reconfigurable Mott electronics for homogeneous neuromorphic platform
Zhen Yang(杨振), Ying-Ming Lu(路英明), and Yu-Chao Yang(杨玉超). Chin. Phys. B, 2023, 32(12): 128401.
[2] MatChat: A large language model and application service platform for materials science
Zi-Yi Chen(陈子逸), Fan-Kai Xie(谢帆恺), Meng Wan(万萌), Yang Yuan(袁扬), Miao Liu(刘淼), Zong-Guo Wang(王宗国), Sheng Meng(孟胜), and Yan-Gang Wang(王彦棡). Chin. Phys. B, 2023, 32(11): 118104.
[3] A backdoor attack against quantum neural networks with limited information
Chen-Yi Huang(黄晨猗) and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2023, 32(10): 100306.
[4] Spin torque oscillator based on magnetic tunnel junction with MgO cap layer for radio-frequency-oriented neuromorphic computing
Huayao Tu(涂华垚), Yanxiang Luo(雒雁翔), Kexin Zeng(曾柯心), Yuxuan Wu(吴宇轩), Like Zhang(张黎可), Baoshun Zhang(张宝顺), and Zhongming Zeng(曾中明). Chin. Phys. B, 2023, 32(10): 107504.
[5] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[6] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[7] Serverless distributed learning for smart grid analytics
Gang Huang(黄刚), Chao Wu(吴超), Yifan Hu(胡一帆), and Chuangxin Guo(郭创新). Chin. Phys. B, 2021, 30(8): 088802.
[8] Digital and analog memory devices based on 2D layered MPS3 ( M=Mn, Co, Ni) materials
Guihua Zhao(赵贵华), Li Wang(王力), Xi Ke(柯曦), and Zhiyi Yu(虞志益). Chin. Phys. B, 2021, 30(4): 047303.
[9] Review of resistive switching mechanisms for memristive neuromorphic devices
Rui Yang(杨蕊). Chin. Phys. B, 2020, 29(9): 097305.
[10] Silicon-based optoelectronic synaptic devices
Lei Yin(尹蕾), Xiaodong Pi(皮孝东), Deren Yang(杨德仁). Chin. Phys. B, 2020, 29(7): 070703.
[11] Optoelectronic memristor for neuromorphic computing
Wuhong Xue(薛武红), Wenjuan Ci(次文娟), Xiao-Hong Xu(许小红), Gang Liu(刘钢). Chin. Phys. B, 2020, 29(4): 048401.
No Suggested Reading articles found!