Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 100202    DOI: 10.1088/1674-1056/ade666
GENERAL Prev   Next  

Generic stability of cooperative equilibria for multi-leader-follower-population mixed games

Wenjun Wu(武文俊)1,2, Hui Yang(杨辉)1,2, and Guanghui Yang(杨光惠)1,2,†
1 School of Mathematics and Statistics, Guizhou University, Guiyang 550025, China;
2 Guizhou Provincial Key Laboratory for Games Decision-Making and Control Systems, Guiyang 550025, China
Abstract  This paper proposes a mixed game with finitely many leaders and follower populations. In such a game, two types of equilibria are defined. First, a Nash equilibrium is introduced for the scenario in which leaders and follower populations are in perfect competition, each maximizing its own payoff. Second, a cooperative equilibrium is proposed for the case where leaders and follower populations, respectively, form coalitions and cooperate. Moreover, the existence of both Nash and cooperative equilibria is proved under the condition that the payoff functions are continuous and quasi-concave. Finally, we demonstrate the generic stability of cooperative equilibria in mixed games. More concretely, in the sense of Baire category, the cooperative equilibria in most mixed games are stable under perturbations of the payoff functions. In short, this paper presents two main contributions. On the one hand, we provide a novel mixed-game framework, which differs from both classical leader-follower games and leader-follower population games. On the other hand, the Nash and cooperative equilibria in our mixed games are distinct from those in existing leader-follower population games. The results are further illustrated with examples.
Keywords:  mixed game      Nash equilibirum      cooperative equilibrium      existence      generic stability  
Received:  01 April 2025      Revised:  06 June 2025      Accepted manuscript online:  20 June 2025
PACS:  02.50.Le (Decision theory and game theory)  
  02.30.-f (Function theory, analysis)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 11271098) and the Guizhou Provincial Basic Research Program (Grant No. MS[2025]676).
Corresponding Authors:  Guanghui Yang     E-mail:  ghyang1@gzu.edu.cn

Cite this article: 

Wenjun Wu(武文俊), Hui Yang(杨辉), and Guanghui Yang(杨光惠) Generic stability of cooperative equilibria for multi-leader-follower-population mixed games 2025 Chin. Phys. B 34 100202

[1] Stackelberg H V, Peacock A T and Boulding K E 1952 Economica 20 384
[2] Kameshwari A V S and Balakrishnan S 2022 Eur. Phys. J. Plus 137 764
[3] Lo C F and Yeung C F 2020 Quantum Inf. Process. 19 373
[4] Cao G, Shi H W, Dang J, Jia R, Guo Z Y and Xue C 2024 Energy Rep. 11 5556
[5] Liu X Z and Zhang H Z 2025 Nonlinear Anal. Real World Appl. 85 104341
[6] Basar T and Srikant R A 2022 J. Optim. Theory Appl. 115 479490
[7] Basar T and Olsder G J 1982 Siam 19 139152
[8] Pang J S and Fukushima M 2005 Comput. Manag. Sci. 2 2156
[9] Yu J and Wang H L 2008 Nonlinear Anal. 69 1775
[10] Ding X D 2012 J. Glob. Optim. 53 381
[11] Jia W S, Xiang S W, He J H and Yang Y L 2015 J. Glob. Optim. 61 19
[12] Mallozzi L and Messalli R 2017 Games 8 25
[13] Liu Z L, Wang G L and Yang G H 2023 Fuzzy Sets Syst. 473 108731
[14] Liu Z L, Wang G L and Yang G H 2024 J. Optim. Theory Appl. 200 585
[15] Wang M, Yang G H, Wang G L, Liu Z L and Chun W 2024 Ann. Oper. Res.
[16] Sandholm W H 2010 Population Games and Evolutionary Dynamics (Boston: The MIT Press)
[17] Nash J 1951 Ann. Math. 54 286
[18] Yang G H and Yang H 2017 Set-Valued Var. Anal. 25 113
[19] Yang G H, Yang H and Song Q Q 2016 J. Nonlinear Sci. Appl. 9 4167
[20] Zhao W 2021 Research on population games based on uncertain parameters and leader-followr structure (Ph.D. Dissertation) (Guiyang: Guizhou University) (in Chinese)
[21] Xia C Y, Wang J, Perc M and Wang Z 2023 Phys. Life Rev. 46 845
[22] Zhu Y, Xia C and Chen Z 2023 IEEE Trans. Autom. Control 68 5798
[23] Wang X J and He Q Y 2025 Chin. Phys. B 34 030202
[24] Wang X J and Wang T 2023 Chin. Phys. B 32 100202
[25] Aumann R J 1961 Trans. Amer. Math. Soc. 98 539
[26] Scarf H E 1971 J. Econ. Theory 3 169
[27] Ichiishi T 1981 Econometrica 49 369
[28] Kajii A 1992 J. Econ. Theory 56 194
[29] Mallozzi L and Tijs S 2008 AUCO Czech Econ. Rev. 2 23
[30] Beal S, Chakrabarti S, Ghintran A and Solal P 2010 Games 1 338
[31] Mallozzi L and Tijs S 2012 AUCO Czech Econ. Rev. 6 513
[32] Chakrabarti S, Gilles R P and Lazarova E 2018 Theory Decis. 85 455
[33] Gilles R P, Mallozzi L and Messalli R 2023 Dyn. Games Appl. 13 566
[34] Yang Z and Ju Y 2016 J. Glob. Optim. 65 563
[35] Yang Z and Zhang H Q 2019 Optim. Lett. 13 1573
[36] Zhang X 2022 Acta Math. Appl. Sin., Ser. A 2 197
[37] Chen T, Chang S S and Zhang Y 2022 Axiom 11 196
[38] Chen T, Chen K and Zhang Y 2024 J. Comput. Appl. Math. 439 115
[39] Wu W J, Yang G H, Fang C Y and Yang H 2023 Acta Math. Appl. Sin., Ser. A 3 921
[40] Wu W J and Jiang J H 1962 Sci. China Ser. A 10 1307
[41] Yu J 1999 J. Math. Econ. 31 361
[42] Zhou Y H and Xiang S W 2007 Int. J. Game Theory 35 493
[43] Aubin J P and Ekeland I 1984 Applied Nonlinear Analysis (New York: John Wiley and Sons) pp. 108
[44] Aliprantis C D and Border K C 2006 Infinite Dimensional Analysis A Hitchhiker’s Guide Third Edition (Berlin: Springer) pp. 28, 93, 560- 569
[45] Kakutani S 1941 Duke Mathe. J. 8 457
[46] Fort M K 1951 Publ. Math. Debr. 2 100
[1] Analysis and image encryption of memristive chaotic system with coexistence bubble
Da Qiu(邱达), Bo Zhang(张博), Tingting Zhang(张婷婷), Song Liu(刘嵩), and Peiyu He(何培宇). Chin. Phys. B, 2025, 34(4): 040203.
[2] Synchronization coexistence in a Rulkov neural network based on locally active discrete memristor
Ming-Lin Ma(马铭磷), Xiao-Hua Xie(谢小华), Yang Yang(杨阳), Zhi-Jun Li(李志军), and Yi-Chuang Sun(孙义闯). Chin. Phys. B, 2023, 32(5): 058701.
[3] Coexistence of giant Rashba spin splitting and quantum spin Hall effect in H-Pb-F
Wenming Xue(薛文明), Jin Li(李金), Chaoyu He(何朝宇), Tao Ouyang(欧阳滔), Xiongying Dai(戴雄英), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(3): 037101.
[4] Detailed structural, mechanical, and electronic study of five structures for CaF2 under high pressure
Ying Guo(郭颖), Yumeng Fang(方钰萌), and Jun Li(李俊). Chin. Phys. B, 2021, 30(3): 030502.
[5] Dynamics analysis of a 5-dimensional hyperchaotic system with conservative flows under perturbation
Xuenan Peng(彭雪楠), Yicheng Zeng(曾以成), and Qi Xie(谢奇). Chin. Phys. B, 2021, 30(10): 100502.
[6] Synchronization transition of a coupled system composed of neurons with coexisting behaviors near a Hopf bifurcation
Jia Bing (贾冰). Chin. Phys. B, 2014, 23(5): 050510.
[7] Coexistence of ferromagnetism and superconductivity in normal mental/superconductor/ferromagnet structures
Yu Hua-Ling(郁华玲), Peng Ju(彭菊), and Jin Ben-Xi(金本喜). Chin. Phys. B, 2010, 19(8): 087203.
[8] Discontinuous bifurcation and coexistence of attractors in a piecewise linear map with a gap
Qu Shi-Xian (屈世显), Lu Yong-Zhi(卢永智), Zhang Lin (张林), He Da-Ren (何大韧). Chin. Phys. B, 2008, 17(12): 4418-4423.
[9] Investigation on the deformation of Ne and Mg isotope chains within relativistic mean-field model
Chen Jin-Gen (陈金根), Cai Xiang-Zhou (蔡翔舟), Wang Ting-Tai (王庭太), Ma Yu-Gang (马余刚), Ren Zhong-Zhou (任中洲), Fang De-Qing (方德清), Zhong Chen (钟晨), Wei Yi-Bin (魏义彬), Guo Wei (郭威), Zhou Xing-Fei (周星飞), Wang Kun (王鲲), Ma Guo-Liang (马国亮), Tian Wen-Dong (田文栋), Chen Jin-Hui (陈金辉), Yan Ting-Zhi (颜廷志), Zuo Jia-Xu (左嘉旭), Ma Chun-Wang (马春旺), Shen Wen-Qing (沈文庆). Chin. Phys. B, 2005, 14(12): 2444-2450.
[10] MULTIMODE THEORY OF WHISPERING-GALLERY-MODE MICROSPHERE LASER
Chai Jin-hua (柴金华), Lu Yi-qun (路轶群), Leung Pui-tang (梁培). Chin. Phys. B, 2000, 9(9): 661-666.
No Suggested Reading articles found!