Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(12): 127101    DOI: 10.1088/1674-1056/ad7c31
Structures and properties of materials under high pressure Prev   Next  

Design of superconducting compounds at lower pressure via intercalating XH4 molecules (X = B, C, and N) into fcc lattices

Yue Zhao(赵玥)†, Sihan Liu(刘思涵)†, Jiao Liu(刘骄)†, Tingting Gu(顾婷婷), Jian Hao(郝健), Jingming Shi(石景明), Wenwen Cui(崔文文)‡, and Yinwei Li(李印威)§
Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
Abstract  Recently, many encouraging experimental advances have been achieved in ternary hydrides superconductors under high pressure. However, the extreme pressure required is indeed a challenge for practical application, which promotes a further exploration for high temperature ($T_{\rm c}$) superconductors at relatively low pressure. Herein, we performed a systematic theoretical investigation on a series of ternary hydrides with stoichiometry $AX_2$H$_8$, which is constructed by interacting molecular $X$H$_4$ ($X=$ B, C, and N) into the fcc metal $A$ lattice under low pressure of 0-150 GPa. We uncovered five compounds which are dynamically stable below 100 GPa, e.g., AcB$_2$H$_8$ (25 GPa), LaB$_2$H$_8$ (40 GPa), RbC$_2$H$_8$ (40 GPa), CsC$_2$H$_8$ (60 GPa), and SrC$_2$H$_8$ (65 GPa). Among them, AcB$_2$H$_8$, which is energetically stable above 2.5 GPa, exhibits the highest $T_{\rm c}$ of 32 K at 25 GPa. The superconductivity originates mainly from the coupling between the electron of Ac atoms and the associated low-frequency phonons, distinct from the previous typical hydrides with H-derived superconductivity. Our results shed light on the future exploration of superconductivity among ternary compounds at low pressure.
Keywords:  ternary superconductors      low pressure      $X$H$_4$ molecules      fcc lattice  
Received:  09 August 2024      Revised:  11 September 2024      Accepted manuscript online:  18 September 2024
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  74.25.Dw (Superconductivity phase diagrams)  
  74.70.-b (Superconducting materials other than cuprates)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074154, 12174160, and 11722433). Y.L. acknowledges the funding from the Six Talent Peaks Project and 333 High-level Talents Project of Jiangsu Province. Y.Z., S.L., and J.L. acknowledge the Innovation and Entrepreneurship Training Programme for University Students in Jiangsu Province (Grant No. 202210320140Y).
Corresponding Authors:  Wenwen Cui, Yinwei Li     E-mail:  wenwencui@jsnu.edu.cn;yinwei_li@jsnu.edu.cn

Cite this article: 

Yue Zhao(赵玥), Sihan Liu(刘思涵), Jiao Liu(刘骄), Tingting Gu(顾婷婷), Jian Hao(郝健), Jingming Shi(石景明), Wenwen Cui(崔文文), and Yinwei Li(李印威) Design of superconducting compounds at lower pressure via intercalating XH4 molecules (X = B, C, and N) into fcc lattices 2024 Chin. Phys. B 33 127101

[1] Van Delft D and Kes P 2010 Phys. Today 63 38
[2] Wigner E and Huntington H á 1935 J. Chem. Phys. 3 764
[3] Ashcroft N W 1968 Phys. Rev. Lett. 21 1748
[4] Yu D, Ying S, Yanchao W and Xin Z 2024 Chin. J. High Pressure Phys. 38
[5] Ashcroft N 2004 Phys. Rev. Lett. 92 187002
[6] Drozdov A, Eremets M, Troyan I, Ksenofontov V and Shylin S I 2015 Nature 525 73
[7] Li Y, Hao J, Liu H, Li Y and Ma Y 2014 J. Chem. Phys. 140
[8] Duan D, Huang X, Tian F, Li D, Yu H, Liu Y, Ma Y, Liu B and Cui T 2015 Phys. Rev. B 91 180502
[9] Duan D, Liu Y, Tian F, Li D, Huang X, Zhao Z, Yu H, Liu B, Tian W and Cui T 2014 Sci. Rep. 4 6968
[10] Somayazulu M, Ahart M, Mishra A K, Geballe Z M, Baldini M, Meng Y, Struzhkin V V and Hemley R J 2019 Phys. Rev. Lett. 122 027001
[11] Drozdov A, Kong P, Minkov V, et al. 2019 Nature 569 528
[12] Liu H, Naumov I I, Hoffmann R, Ashcroft N and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990
[13] Peng F, Sun Y, Pickard C J, Needs R J, Wu Q and Ma Y 2017 Phys. Rev. Lett. 119 107001
[14] Snider E, Dasenbrock-Gammon N, McBride R, Wang X, Meyers N, Lawler K V, Zurek E, Salamat A and Dias R P 2021 Phys. Rev. Lett. 126 117003
[15] Kong P, Minkov V S, Kuzovnikov M A, et al. 2021 Nat. Commun. 12 5075
[16] Troyan I A, Semenok D V, Kvashnin A G, et al. 2021 Adv. Mater. 33 2006832
[17] Li Y, Hao J, Liu H, Tse J S, Wang Y and Ma Y 2015 Sci. Rep. 5 9948
[18] Wang H, Tse J S, Tanaka K, Iitaka T and Ma Y 2012 Proc. Natl. Acad. Sci. USA 109 6463
[19] Ma L, Wang K, Xie Y, Yang X, Wang Y, Zhou M, Liu H, Yu X, Zhao Y, Wang H, et al. 2022 Phys. Rev. Lett. 128 167001
[20] Li Z, He X, Zhang C, Wang X, Zhang S, Jia Y, Feng S, Lu K, Zhao J, Zhang J, et al. 2022 Nat. Commun. 13 2863
[21] Cui W and Li Y 2019 Chin. Phys. B 28 107104
[22] Ma J, Kuang J, Cui W, Chen J, Gao K, Hao J, Shi J and Li Y 2021 Chin. Phys. Lett. 38 027401
[23] He X, Zhang C, Li Z, Zhang S, Min B, Zhang J, Lu K, Zhao J, Shi L, Peng Y, et al. 2023 Chin. Phys. Lett. 40 057404
[24] Li S, Wang H, Sun W, Lu C and Peng F 2022 Phys. Rev. B 105 224107
[25] Gao M, Yan X W, Lu Z Y and Xiang T 2021 Phys. Rev. B 104 L100504
[26] Wrona I A, Szczesniak R and Durajski A P 2024 J. Phys. Chem. C 128 9247
[27] Durajski A P and Szczesniak R 2021 Phys. Chem. Chem. Phys. 23 25070
[28] Hilleke K P and Zurek E 2022 Angew. Chem., Int. Ed. 61 e202207589
[29] Zurek E and Bi T 2019 J. Chem. Phys. 150 050901
[30] Flores-Livas J A, Boeri L, Sanna A, Profeta G, Arita R and Eremets M 2020 Phys. Rep. 856 1
[31] Di Cataldo S, von der Linden W and Boeri L 2022 npj Comput. Mater. 8 2
[32] Cui W, Bi T, Shi J, Li Y, Liu H, Zurek E and Hemley R J 2020 Phys. Rev. B 101 134504
[33] Sun Y, Tian Y, Jiang B, Li X, Li H, Iitaka T, Zhong X and Xie Y 2020 Phys. Rev. B 101 174102
[34] Song Y, Bi J, Nakamoto Y, Shimizu K, Liu H, Zou B, Liu G, Wang H and Ma Y 2023 Phys. Rev. Lett. 130 266001
[35] Gao K, Cui W, Shi J, Durajski A P, Hao J, Botti S, Marques M A and Li Y 2024 Phys. Rev. B 109 014501
[36] Li B, Yang Y, Fan Y, Zhu C, Liu S and Shi Z 2023 Chin. Phys. Lett. 40 097402
[37] Zhang Z, Cui T, Hutcheon M J, Shipley A M, Song H, Du M, Kresin V Z, Duan D, Pickard C J and Yao Y 2022 Phys. Rev. Lett. 128 047001
[38] Gu T, Cui W, Hao J, Shi J, Durajski A P, Liu H and Li Y 2024 Phys. Rev. B 110 064105
[39] Di Cataldo S, Heil C, von der Linden W and Boeri L 2021 Phys. Rev. B 104 L020511
[40] Liang X, Bergara A, Wei X, Song X, Wang L, Sun R, Liu H, Hemley R J, Wang L, Gao G, et al. 2021 Phys. Rev. B 104 134501
[41] Belli F and Errea I 2022 Phys. Rev. B 106 134509
[42] Song X, Hao X, Wei X, He X L, Liu H, Ma L, Liu G, Wang H, Niu J, Wang S, et al. 2024 J. Am. Chem. Soc. 146 13797
[43] Jiang M J, Hai Y L, Tian H L, Ding H B, Feng Y J, Yang C L, Chen X J and Zhong G H 2022 Phys. Rev. B 105 104511
[44] Wan Z and Zhang R 2022 Appl. Phys. Lett. 121 192601
[45] Kresse G and Furthmüller J 1996 Comp. Mater. Sci. 6 15
[46] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[47] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[48] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[49] Togo A and Tanaka I 2015 Scr. Mater. 108 1
[50] Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397
[51] Bader R F 1985 Acc. Chem. Res. 18 9
[52] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, et al. 2009 J. Phys.: Condens.Matter 21 395502
[53] Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli M B, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, et al. 2017 J. Phys.: Condens.Matter 29 465901
[54] Allen P B and Dynes R 1975 Phys. Rev. B 12 905
[55] Parlinski K, Li Z and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[56] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[57] Eliashberg G 1960 Sov. Phys. JETP 11 696
[1] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[2] Similarity principle of microwave argon plasma at low pressure
Xiao-Yu Han(韩晓宇), Jun-Hong Wang(王均宏), Mei-E Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yu-Jian Li(李雨键). Chin. Phys. B, 2018, 27(8): 085206.
[3] SiC epitaxial layers grown by chemical vapour deposition and the fabrication of Schottky barrier diodes
Wang Yue-Hu(王悦湖), Zhang Yi-Men(张义门), Zhang Yu-Ming(张玉明), Zhang Lin(张林), Jia Ren-Xu(贾仁需), and Chen Da(陈达). Chin. Phys. B, 2010, 19(3): 036803.
No Suggested Reading articles found!