| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
High-performance bilayer IGZO thin-film transistors by sputtering heterojunction with differences in indium elemental content |
| Longfei Zhang(张龙飞)1, Hanzhe Zhang(张翰哲)2, Yuhang Wang(王宇航)2, Shichen Su(宿世臣)2,†, Xianghu Wang(王相虎)3,‡, Dezhen Shen(申德振)4, and Hai Zhu(朱海)1,§ |
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China; 2 Institute of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China; 3 School of Materials, Shanghai Dianji University, Shanghai 200245, China; 4 Gusu Laboratory of Materials, Suzhou 215031, China |
|
|
|
|
Abstract The high-quality semiconductor InGaZnO (IGZO) alloy thin films with different indium (In) elemental contents were deposit utilized magnetron sputtering. The novel bilayer heterojunction TFT devices based on our fabricated IGZO films were proposed, and their performance exhibited significant improvement compared to single layer IGZO TFTs. In the bilayer heterojunction TFT, the field-effect mobility was promoted to 23.5 cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$, the switching ratio reached 4.1$\times10^{7}$, and the subthreshold swing was reduced to 0.42 V/dec. Moreover, the variation of bilayer TFTs threshold voltage ($V_{\rm th}$) was significantly suppressed, Under positive gate bias stress (PBS) and negative gate bias stress (NBS), the threshold shift is reduced to be 1.5 V and $-1.1 $ V, respectively. The heterojunction within the bilayer IGZO films constructs a potential barrier at the interface, which facilitated the accumulation of channel electrons. Additionally, the low In-element content passivation layer in IGZO films not only preserved the channel of TFT but also reduced electron scattering, thereby the performance properties of TFT were enhancing. The excellent transistor characteristics of devices demonstrate the feasibility of our proposed bilayer heterojunction TFT, which will promote the basic research of IGZO device and accelerate the practical application of transparency IGZO TFT.
|
Received: 02 April 2025
Revised: 07 May 2025
Accepted manuscript online: 09 May 2025
|
|
PACS:
|
81.05.Gc
|
(Amorphous semiconductors)
|
| |
85.30.Tv
|
(Field effect devices)
|
| |
61.43.Dq
|
(Amorphous semiconductors, metals, and alloys)
|
| |
71.20.Nr
|
(Semiconductor compounds)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U22A2073 and 62474197) and the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant Nos. 2024A1515011536 and 2025A04J7142). |
Corresponding Authors:
Shichen Su, Xianghu Wang, Hai Zhu
E-mail: shichensu@scnu.edu.cn;wangxh@sdju.edu.cn;zhuhai5@mail.sysu.edu.cn
|
Cite this article:
Longfei Zhang(张龙飞), Hanzhe Zhang(张翰哲), Yuhang Wang(王宇航), Shichen Su(宿世臣), Xianghu Wang(王相虎), Dezhen Shen(申德振), and Hai Zhu(朱海) High-performance bilayer IGZO thin-film transistors by sputtering heterojunction with differences in indium elemental content 2025 Chin. Phys. B 34 108101
|
[1] Geng D, Wang K, Li L, Myny K, Nathan A, Jang J, Kuo Y and Liu M 2023 Nat. Electron. 6 963 [2] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488 [3] Kang Y, Lee W, Kim J, Keum K, Kang S H, Jo J W, Park S K and Kim Y H 2021 Mater. Res. Bull. 139 111252 [4] Li Z Y, Song S M, Wang W X, Gong J H, Tong Y, Dai M J, Lin S S, Yang T L and Sun H 2022 Nanotechnology 34 025702 [5] Chen F, Zhang M, Wan Y, Xu X, Wong M and Kwok Hoi S 2023 J. Semicond. 44 091620 [6] Xiong W, Huo J Y, Wu X H, Liu W J, Zhang D W and Ding S J 2023 Chin. Phys. B 32 018503 [7] Zhu Y, He Y, Jiang S, Zhu L, Chen C and Wan Q 2021 J. Semicond. 42 031101 [8] Ito M, Kon M, Miyazaki C, Ikeda N, Ishizaki M, Matsubara R, Ugajin Y and Sekine N 2008 Phys. Status Solidi A 205 1885 [9] Tang H, Li Y, Sokolovskij R, Sacco L, Zheng H, Ye H, Yu H, Fan X, Tian H, Ren T L and Zhang G 2019 ACS Appl. Mater. Interfaces 11 40850 [10] Honda W, Harada S, Ishida S, Arie T, Akita S and Takei K 2015 Adv. Mater. 27 4674 [11] Liu Y, Zhou H L, Cheng R, YuWJ, Huang Y and Duan X F 2014 Nano Lett. 14 1413 [12] Zhang M N, Shao Y, Wang X L, Wu X, Liu W J and Ding S J 2020 Chin. Phys. B 29 078503 [13] Song S, Liang H, Huo W, Zhang G, Zhang Y, Wang J and Mei Z 2024 Chin. Phys. Lett. 41 068501 [14] Abliz A 2021 IEEE Trans. Electron Dev. 68 3379 [15] Abliz A, Gao Q G, Wan D, Liu X Q, Xu L, Liu C S, Jiang C Z, Li X F, Chen H P, Guo T L, Li J C and Liao L 2017 ACS Appl. Mater. Interfaces 9 10798 [16] Liu W S, Hsu C H, Jiang Y, Lai Y C and Kuo H C 2022 Membranes (Basel) 12 49 [17] Abliz A 2020 J. Alloys Compd. 831 154694 [18] Hong H Y M, Yi D J, Moon Y K, Son K S, Lim J H, Jeong K and Chung K B 2024 IEEE Trans. Electron Dev. 71 1097 [19] Peng C, Huang H X, Xu M, Chen L L, Li X F and Zhang J H 2022 Nanomaterials 12 4021 [20] Li J, Zhang Y, Wang J, Yang H, Zhou X, Chan M, Wang X, Lu L and Zhang S 2022 IEEE Electron Dev. Lett. 43 729 [21] Peng H, Chang B, Fu H, Yang H, Zhang Y, Zhou X, Lu L and Zhang S 2020 IEEE Trans. Electron Dev. 67 1619 [22] Guo M, Ou H, Xie D Y, Zhu Q J, Wang M Y, Liang L Y, Liu F J, Ning C, Cao H T, Yuan G C, Lu X B and Liu C 2023 Adv. Electron. Mater. 9 2201184 [23] Ji X, Yuan Y, Yin X, Yan S, Xin Q and Song A 2022 IEEE Trans. Electron Dev. 69 6783 [24] Park C Y, Jeon S P, Park J B, Park H B, Kim D H, Yang S H, Kim G, Jo J W, Oh M S, Kim M, Kim Y H and Park S K 2023 Ceram. Int. 49 5905 [25] Zhu Q, Huang Y, Wu J, Guo M, Ou H, Liu B, Lu X, Chen J, Liang X, Wu Q and Liu C 2024 IEEE Electron Dev. Lett. 45 845 [26] Sun Q J, Wu J, Zhang M, Yuan Y, Gao X, Wang S D, Tang Z, Kuo C C and Yan Y 2022 Phys. Status Solidi A 219 2200311 [27] Fortunato E, Barquinha P and Martins R 2012 Adv Mater 24 2945 [28] Wang C, Lu W, Li F, Luo Q and Ma F 2022 Chin. Phys. B 31 096101 [29] Abliz A, Wang J, Xu L, Wan D, Liao L, Ye C, Liu C, Jiang C, Chen H and Guo T 2016 Appl. Phys. Lett. 108 213501 [30] Zhang Q, Xia G, Li H, Sun Q, Gong H andWang S 2024 Nanotechnology 35 125202 [31] Rim Y S, Chen H, Kou X, Duan H S, Zhou H, Cai M, Kim H J and Yang Y 2014 Adv. Mater. 26 4273 [32] Lee M, Jo J W, Kim Y J, Choi S, Kwon S M, Jeon S P, Facchetti A, Kim Y H and Park S K 2018 Adv. Mater. 30 1804120 [33] Liang K, Wang Y, Shao S, Luo M, Pecunia V, Shao L, Zhao J, Chen Z, Mo L and Cui Z 2019 J. Mater. Chem. C 7 6169 [34] Kim Y S, Lee H M, Lim J H and Park J S 2020 Appl. Phys. Lett. 117 143505 [35] He F, Wang Y, Yuan H, Lin Z, Su J, Zhang J, Chang J and Hao Y 2021 Ceram. Int. 47 35029 [36] Tauc J, Grigorovici R and Vancu A 1966 Phys. Status Solidi B 15 627 [37] Wen P, Peng C, Chen Z, Ding X, Chen F-H, Yan G, Xu L,Wang D, Sun X, Chen L, Li J, Li X and Zhang J 2024 Appl. Phys. Lett. 124 133501 [38] Swallow J E N, Palgrave R G, Murgatroyd P A E, Regoutz A, Lorenz M, Hassa A, Grundmann M, von Wenckstern H, Varley J B and Veal T D 2021 ACS Appl. Mater. Interfaces 13 2807 [39] Ma X, Wang Z, Qin Q, Chen J, Liu X, Zou F, Xu Z, Chen W, Li G, Li Y, Zhai T and Li L 2025 Adv. Mater. 37 2500572 [40] Cho M H, Choi C H, Seul H J, Cho H C and Jeong J K 2021 ACS Appl. Mater. Interfaces 13 16628 [41] Zheng L L, Ma Q, Wang Y H, Liu W J, Ding S J and Zhang D W 2016 IEEE Electron Dev. Lett. 37 743 [42] Guo J, Zhang D, Wang M and Wang H 2021 Chin. Phys. B 30 118102 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|