Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 108101    DOI: 10.1088/1674-1056/add67d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High-performance bilayer IGZO thin-film transistors by sputtering heterojunction with differences in indium elemental content

Longfei Zhang(张龙飞)1, Hanzhe Zhang(张翰哲)2, Yuhang Wang(王宇航)2, Shichen Su(宿世臣)2,†, Xianghu Wang(王相虎)3,‡, Dezhen Shen(申德振)4, and Hai Zhu(朱海)1,§
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-Sen University, Guangzhou 510275, China;
2 Institute of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China;
3 School of Materials, Shanghai Dianji University, Shanghai 200245, China;
4 Gusu Laboratory of Materials, Suzhou 215031, China
Abstract  The high-quality semiconductor InGaZnO (IGZO) alloy thin films with different indium (In) elemental contents were deposit utilized magnetron sputtering. The novel bilayer heterojunction TFT devices based on our fabricated IGZO films were proposed, and their performance exhibited significant improvement compared to single layer IGZO TFTs. In the bilayer heterojunction TFT, the field-effect mobility was promoted to 23.5 cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$, the switching ratio reached 4.1$\times10^{7}$, and the subthreshold swing was reduced to 0.42 V/dec. Moreover, the variation of bilayer TFTs threshold voltage ($V_{\rm th}$) was significantly suppressed, Under positive gate bias stress (PBS) and negative gate bias stress (NBS), the threshold shift is reduced to be 1.5 V and $-1.1 $ V, respectively. The heterojunction within the bilayer IGZO films constructs a potential barrier at the interface, which facilitated the accumulation of channel electrons. Additionally, the low In-element content passivation layer in IGZO films not only preserved the channel of TFT but also reduced electron scattering, thereby the performance properties of TFT were enhancing. The excellent transistor characteristics of devices demonstrate the feasibility of our proposed bilayer heterojunction TFT, which will promote the basic research of IGZO device and accelerate the practical application of transparency IGZO TFT.
Keywords:  semiconductor      alloy film      field effect      transistors  
Received:  02 April 2025      Revised:  07 May 2025      Accepted manuscript online:  09 May 2025
PACS:  81.05.Gc (Amorphous semiconductors)  
  85.30.Tv (Field effect devices)  
  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  71.20.Nr (Semiconductor compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U22A2073 and 62474197) and the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant Nos. 2024A1515011536 and 2025A04J7142).
Corresponding Authors:  Shichen Su, Xianghu Wang, Hai Zhu     E-mail:  shichensu@scnu.edu.cn;wangxh@sdju.edu.cn;zhuhai5@mail.sysu.edu.cn

Cite this article: 

Longfei Zhang(张龙飞), Hanzhe Zhang(张翰哲), Yuhang Wang(王宇航), Shichen Su(宿世臣), Xianghu Wang(王相虎), Dezhen Shen(申德振), and Hai Zhu(朱海) High-performance bilayer IGZO thin-film transistors by sputtering heterojunction with differences in indium elemental content 2025 Chin. Phys. B 34 108101

[1] Geng D, Wang K, Li L, Myny K, Nathan A, Jang J, Kuo Y and Liu M 2023 Nat. Electron. 6 963
[2] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488
[3] Kang Y, Lee W, Kim J, Keum K, Kang S H, Jo J W, Park S K and Kim Y H 2021 Mater. Res. Bull. 139 111252
[4] Li Z Y, Song S M, Wang W X, Gong J H, Tong Y, Dai M J, Lin S S, Yang T L and Sun H 2022 Nanotechnology 34 025702
[5] Chen F, Zhang M, Wan Y, Xu X, Wong M and Kwok Hoi S 2023 J. Semicond. 44 091620
[6] Xiong W, Huo J Y, Wu X H, Liu W J, Zhang D W and Ding S J 2023 Chin. Phys. B 32 018503
[7] Zhu Y, He Y, Jiang S, Zhu L, Chen C and Wan Q 2021 J. Semicond. 42 031101
[8] Ito M, Kon M, Miyazaki C, Ikeda N, Ishizaki M, Matsubara R, Ugajin Y and Sekine N 2008 Phys. Status Solidi A 205 1885
[9] Tang H, Li Y, Sokolovskij R, Sacco L, Zheng H, Ye H, Yu H, Fan X, Tian H, Ren T L and Zhang G 2019 ACS Appl. Mater. Interfaces 11 40850
[10] Honda W, Harada S, Ishida S, Arie T, Akita S and Takei K 2015 Adv. Mater. 27 4674
[11] Liu Y, Zhou H L, Cheng R, YuWJ, Huang Y and Duan X F 2014 Nano Lett. 14 1413
[12] Zhang M N, Shao Y, Wang X L, Wu X, Liu W J and Ding S J 2020 Chin. Phys. B 29 078503
[13] Song S, Liang H, Huo W, Zhang G, Zhang Y, Wang J and Mei Z 2024 Chin. Phys. Lett. 41 068501
[14] Abliz A 2021 IEEE Trans. Electron Dev. 68 3379
[15] Abliz A, Gao Q G, Wan D, Liu X Q, Xu L, Liu C S, Jiang C Z, Li X F, Chen H P, Guo T L, Li J C and Liao L 2017 ACS Appl. Mater. Interfaces 9 10798
[16] Liu W S, Hsu C H, Jiang Y, Lai Y C and Kuo H C 2022 Membranes (Basel) 12 49
[17] Abliz A 2020 J. Alloys Compd. 831 154694
[18] Hong H Y M, Yi D J, Moon Y K, Son K S, Lim J H, Jeong K and Chung K B 2024 IEEE Trans. Electron Dev. 71 1097
[19] Peng C, Huang H X, Xu M, Chen L L, Li X F and Zhang J H 2022 Nanomaterials 12 4021
[20] Li J, Zhang Y, Wang J, Yang H, Zhou X, Chan M, Wang X, Lu L and Zhang S 2022 IEEE Electron Dev. Lett. 43 729
[21] Peng H, Chang B, Fu H, Yang H, Zhang Y, Zhou X, Lu L and Zhang S 2020 IEEE Trans. Electron Dev. 67 1619
[22] Guo M, Ou H, Xie D Y, Zhu Q J, Wang M Y, Liang L Y, Liu F J, Ning C, Cao H T, Yuan G C, Lu X B and Liu C 2023 Adv. Electron. Mater. 9 2201184
[23] Ji X, Yuan Y, Yin X, Yan S, Xin Q and Song A 2022 IEEE Trans. Electron Dev. 69 6783
[24] Park C Y, Jeon S P, Park J B, Park H B, Kim D H, Yang S H, Kim G, Jo J W, Oh M S, Kim M, Kim Y H and Park S K 2023 Ceram. Int. 49 5905
[25] Zhu Q, Huang Y, Wu J, Guo M, Ou H, Liu B, Lu X, Chen J, Liang X, Wu Q and Liu C 2024 IEEE Electron Dev. Lett. 45 845
[26] Sun Q J, Wu J, Zhang M, Yuan Y, Gao X, Wang S D, Tang Z, Kuo C C and Yan Y 2022 Phys. Status Solidi A 219 2200311
[27] Fortunato E, Barquinha P and Martins R 2012 Adv Mater 24 2945
[28] Wang C, Lu W, Li F, Luo Q and Ma F 2022 Chin. Phys. B 31 096101
[29] Abliz A, Wang J, Xu L, Wan D, Liao L, Ye C, Liu C, Jiang C, Chen H and Guo T 2016 Appl. Phys. Lett. 108 213501
[30] Zhang Q, Xia G, Li H, Sun Q, Gong H andWang S 2024 Nanotechnology 35 125202
[31] Rim Y S, Chen H, Kou X, Duan H S, Zhou H, Cai M, Kim H J and Yang Y 2014 Adv. Mater. 26 4273
[32] Lee M, Jo J W, Kim Y J, Choi S, Kwon S M, Jeon S P, Facchetti A, Kim Y H and Park S K 2018 Adv. Mater. 30 1804120
[33] Liang K, Wang Y, Shao S, Luo M, Pecunia V, Shao L, Zhao J, Chen Z, Mo L and Cui Z 2019 J. Mater. Chem. C 7 6169
[34] Kim Y S, Lee H M, Lim J H and Park J S 2020 Appl. Phys. Lett. 117 143505
[35] He F, Wang Y, Yuan H, Lin Z, Su J, Zhang J, Chang J and Hao Y 2021 Ceram. Int. 47 35029
[36] Tauc J, Grigorovici R and Vancu A 1966 Phys. Status Solidi B 15 627
[37] Wen P, Peng C, Chen Z, Ding X, Chen F-H, Yan G, Xu L,Wang D, Sun X, Chen L, Li J, Li X and Zhang J 2024 Appl. Phys. Lett. 124 133501
[38] Swallow J E N, Palgrave R G, Murgatroyd P A E, Regoutz A, Lorenz M, Hassa A, Grundmann M, von Wenckstern H, Varley J B and Veal T D 2021 ACS Appl. Mater. Interfaces 13 2807
[39] Ma X, Wang Z, Qin Q, Chen J, Liu X, Zou F, Xu Z, Chen W, Li G, Li Y, Zhai T and Li L 2025 Adv. Mater. 37 2500572
[40] Cho M H, Choi C H, Seul H J, Cho H C and Jeong J K 2021 ACS Appl. Mater. Interfaces 13 16628
[41] Zheng L L, Ma Q, Wang Y H, Liu W J, Ding S J and Zhang D W 2016 IEEE Electron Dev. Lett. 37 743
[42] Guo J, Zhang D, Wang M and Wang H 2021 Chin. Phys. B 30 118102
[1] Pressure-induced amorphization and metallization in orthorhombic SiP
Qiru Zeng(曾琪茹), Youjun Zhang(张友君), Yukai Zhuang(庄毓凯), Linfei Yang(杨林飞), Qiming Wang(王齐明), and Yi Sun(孙熠). Chin. Phys. B, 2025, 34(9): 096102.
[2] Room-temperature exciton-polariton condensation in pressed perovskite microcavities
Tianyin Zhu(朱天寅), Zelei Chen(陈泽磊), Xiaoyu Wang(王小宇), Zhongmin Huang(黄钟民), Haibin Zhao(赵海斌), and Jun Wang(王俊). Chin. Phys. B, 2025, 34(9): 094202.
[3] Thermal transport properties of 2D narrow bandgap semiconductor Ca3N2, Ba3P2, and Ba3As2: Machine learning potential study
Wenlong Li(李文龙), Yu Liu(刘余), Zhendong Li(李振东), Pei Zhang(张培), Xinghua Li(李兴华), and Tao Ouyang(欧阳滔). Chin. Phys. B, 2025, 34(9): 096302.
[4] Spatial electron tunneling leads to space-charge-limited current in organic hole transport materials
Shaofeng Chen(陈绍枫), Yanfei Lu(鲁燕飞), Dongcheng Chen(陈东成), and Shi-Jian Su(苏仕健). Chin. Phys. B, 2025, 34(7): 078101.
[5] Single event burnout in SiC MOSFETs induced by nuclear reactions with high-energy oxygen ions
Shi-Wei Zhao(赵世伟), Bing Ye(叶兵), Yu-Zhu Liu(刘郁竹), Xiao-Yu Yan(闫晓宇), Pei-Pei Hu(胡培培), Teng Zhang(张腾), Peng-Fei Zhai(翟鹏飞), Jing-Lai Duan(段敬来), and Jie Liu(刘杰). Chin. Phys. B, 2025, 34(7): 078501.
[6] Performance enhancement of IGZO thin-film transistors via ultra-thin HfO2 and the implementation of logic device functionality
Xuyang Li(栗旭阳), Bin Liu(刘斌), Xianwen Liu(刘贤文), Shuo Zhang(张硕), Congyang Wen(温丛阳), Jin Zhang(张进), Haifeng Liang(梁海锋), Guangcai Yuan(袁广才), Jianshe Xue(薛建设), and Zhinong Yu(喻志农). Chin. Phys. B, 2025, 34(7): 076101.
[7] Enhanced electronic and photoelectrical properties of two-dimensional Zn-doped SnS2
Xichen Chuai(揣喜臣), Peng Yin(殷鹏), Jiawei Wang(王嘉玮), Guanhua Yang(杨冠华), Congyan Lu(陆丛研), Di Geng(耿玓), Ling Li(李泠), Can Liu(刘灿), Zhongming Wei(魏钟鸣), and Nianduan Lu(卢年端). Chin. Phys. B, 2025, 34(5): 056101.
[8] Predicted stable two-dimensional semiconductor TiOS materials with promising photocatalytic properties: First-principles calculations
Pan Zhang(张攀), Shihai Fu(付世海), Chunying Pu(濮春英), Xin Tang(唐鑫), and Dawei Zhou(周大伟). Chin. Phys. B, 2025, 34(5): 057103.
[9] Stokes/anti-Stokes Raman spectroscopy of Al0.86Ga0.14N semiconductor alloy
Yuru Lin(林玉茹), Yu Li(李宇), Binbin Wu(吴彬彬), Jingyi Liu(刘静仪), Ruiang Guo(郭睿昂), Yangbin Wang(王扬斌), Qiwei Hu(胡启威), and Li Lei(雷力). Chin. Phys. B, 2025, 34(5): 057802.
[10] Amorphous IGMO/IGZO heterojunction thin-film transistors with enhanced ultraviolet detection performance
Jichun Yao(姚继春), Yiyu Zhang(张怡宇), and Xingzhao Liu(刘兴钊). Chin. Phys. B, 2025, 34(5): 057104.
[11] Non-negligible influence of vacancies and interlayer coupling on electronic properties of heavy ion irradiated SnSe2 FETs
Shifan Gao(高诗凡), Siyuan Ma(马思远), Shengxia Zhang(张胜霞), Pengliang Zhu(朱彭靓), Jie Liu(刘杰), Lijun Xu(徐丽君), Pengfei Zhai(翟鹏飞), Peipei Hu(胡培培), and Yan Li(李燕). Chin. Phys. B, 2025, 34(4): 046106.
[12] Electronic structure of a narrow-gap semiconductor KAg3Te2
Rong Feng(冯荣), Haotian Zheng(郑昊天), Haoran Liu(刘浩然), Binru Zhao(赵彬茹), Xunqing Yin(尹训庆), Zhihua Liu(刘智华), Feng Liu(刘峰), Guohua Wang(王国华), Xiaofeng Xu(许晓峰), Wentao Zhang(张文涛), Weidong Luo(罗卫东), Wei Zhou(周苇), and Dong Qian(钱冬). Chin. Phys. B, 2025, 34(4): 047102.
[13] An ab initio dataset of size-dependent effective thermal conductivity for advanced technology transistors
Han Xie(谢涵), Ru Jia(贾如), Yonglin Xia(夏涌林), Lei Li(李磊), Yue Hu(胡跃), Jiaxuan Xu(徐家璇), Yufei Sheng(盛宇飞), Yuanyuan Wang(王元元), and Hua Bao(鲍华). Chin. Phys. B, 2025, 34(4): 046501.
[14] Emergence of metal-semiconductor phase transition in MX2(M = Ni, Pd, Pt; X = S, Se, Te) moiré superlattices
Jie Li(李杰), Rui-Zi Zhang(张瑞梓), Jinbo Pan(潘金波), Ping Chen(陈平), and Shixuan Du(杜世萱). Chin. Phys. B, 2025, 34(3): 037302.
[15] Realization of robust Ohmic contact for semiconducting black arsenic by coupling with graphene
Xinjuan Cheng(程新娟) and Xuechao Zhai(翟学超). Chin. Phys. B, 2025, 34(2): 027402.
No Suggested Reading articles found!