| INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Spatial electron tunneling leads to space-charge-limited current in organic hole transport materials |
| Shaofeng Chen(陈绍枫)1,2,†, Yanfei Lu(鲁燕飞)1,2,†, Dongcheng Chen(陈东成)1,2,‡, and Shi-Jian Su(苏仕健)1,2 |
1 State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China; 2 Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China |
|
|
|
|
Abstract The injection of electrical charge from an electrode into organic semiconductors directly influences the performance of organic optoelectronic devices. However, our understanding of the mechanisms behind charge injection remains incomplete. In this study, we explored the hole injection from an indium tin oxide (ITO) electrode into a hole transport layer (HTL) by employing various organic interlayers (ILs) with different ionization potentials (IPs). It was demonstrated that using O$_{2}$ plasma treatment onto an ITO surface and incorporating an interlayer (IL) with a higher IP between the ITO electrode and the HTL can substantially increase the hole current density. This improvement leads to the achievement of barrier-free injection and the establishment of space-charge-limited current. We propose two synergistic mechanisms of spatial electron tunneling that govern the injection characteristics: electron tunneling from the HTL across the IL to the electrode that establishes an electrostatic equilibrium with a zero-injection barrier and an electric-field-induced spatial tunneling effect that occurs during device operation with applying bias. This research offers a strategy to achieve space-charge-limited hole current and provides an explanatory framework for understanding the underlying physics of charge injection.
|
Received: 14 January 2025
Revised: 31 March 2025
Accepted manuscript online: 10 April 2025
|
|
PACS:
|
42.70.Jk
|
(Polymers and organics)
|
| |
73.43.Jn
|
(Tunneling)
|
| |
81.05.Fb
|
(Organic semiconductors)
|
|
| Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFB0408000), Guangdong Provincial Department of Science and Technology (Grant No. 2019TQ05C778), and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515011639). |
Corresponding Authors:
Dongcheng Chen
E-mail: mschendc@scut.edu.cn
|
Cite this article:
Shaofeng Chen(陈绍枫), Yanfei Lu(鲁燕飞), Dongcheng Chen(陈东成), and Shi-Jian Su(苏仕健) Spatial electron tunneling leads to space-charge-limited current in organic hole transport materials 2025 Chin. Phys. B 34 078101
|
[1] Kroemer H 2000 Nobel Prize lecture [2] 2012 Nat. Mater. 11 91 [3] Zheng Y, Gao J, Han C and Chen W 2021 Cell. Rep. Phys. Sci. 2 100298 [4] Zhang X J, Shao Z B, Zhang X H, He Y Y and Jie J S 2016 Adv. Mater. 28 10409 [5] Tung R T 2014 Appl. Phys. Rev. 1 011304 [6] Sachnik O, Tan X, Dou D, Haese C, Kinaret N, Lin K H, Andrienko D, Baumgarten M, Graf R,Wetzelaer G J A H, Michels J J and Blom PW M 2023 Nat. Mater. 22 1114 [7] Khodabakhshi E, Klockner B, Zentel R, Michels J J and Blom P W M 2019 Mater. Horiz. 6 2024 [8] Abbaszadeh D, Kunz A, Wetzelaer G A H, Michels J J, Craciun N I, Koynov K, Lieberwirth I and Blom P W M 2016 Nat. Mater. 15 628 [9] Kotadiya N B, Lu H, Mondal A, Ie Y, Andrienko D, Blom P W M and Wetzelaer G J A H 2018 Nat. Mater. 17 329 [10] Kotadiya N B, Mondal A, Blom P W M, Andrienko D and Wetzelaer G J A H 2019 Nat. Mater. 18 1182 [11] Mott N F and Gurney R W 1940 Electronic Processes in Ionic Crystals (Oxford: Oxford University Press) [12] Ellmer K 2012 Nat. Photonics 6 808 [13] Ren Y, Zhao G Y and Chen Y Q 2011 Appl. Surf. Sci. 258 914 [14] Hecht D S, Hu L B and Irvin G 2011 Adv. Mater. 23 1482 [15] Chen L J, Niu G X, Niu L B and Song Q L 2022 Chin. Phys. B 31 038802 [16] Liu J M and Zhang D L 2023 Chin. Phys. B 32 064208 [17] Parker I D 1994 J. Appl. Phys. 75 1656 [18] Park Y, Choong V, Gao Y, Hsieh B R and Tang C W 1996 Appl. Phys. Lett. 68 2699 [19] Chen D C, Zhou H, Cai P, Sun S, Ye H, Su S J and Cao Y 2014 Appl. Phys. Lett. 104 053304 [20] Nehate S D, Prakash A, Mani P D and Sundaram K B 2018 ECS Journal of Solid State Science and Technology 7 P87 [21] HelanderMG,Wang Z B, Qiu J, GreinerMT, Puzzo D P, Liu ZWand Lu Z H 2011 Science 332 944 [22] Deng J, Hu D, Zhang Z, Zong B, Meng X, Sun Q, Shen B, Kang B and Silva S R P 2022 J. Alloys Compd. 911 164983 [23] Huang F, Liu H, Li X and Wang S 2022 Chem. Eng. J. 427 131356 [24] Shizuo T, Koji N and Yasunori T 1996 J. Phys. D: Appl. Phys. 29 2750 [25] Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J and Lu Z H 2011 Nat. Mater. 11 76 [26] Zhou X, Blochwitz J, Pfeiffer M, Nollau A, Fritz T and Leo K 2001 Adv. Funct. Mater. 11 310 [27] Koch N, Duhm S, Rabe J P, Vollmer A and Johnson R L 2005 Phys. Rev. Lett. 95 237601 [28] Park S M, Kim Y H, Yi Y, Oh H Y and Won Kim J 2010 Appl. Phys. Lett. 97 063308 [29] Wang Q, Yang J, Gerlach A, Schreiber F and Duhm S 2022 J. Phys.: Mater. 5 044010 [30] Duhm S 2022 Electronic Structure 4 034003 [31] Koch N 2021 Appl. Phys. Lett. 119 260501 [32] Zojer E, Taucher T C and Hofmann O T 2019 Adv. Mater. Interfaces 6 1900581 [33] Chen D, Zhang C, Zhou H, Li X, Wang Z, Su S and Cao Y 2015 ACS Appl. Mater. Inter. 7 3133 [34] Chen D C, Zhou H, Li X C, Liu M, Ye H, Su S J and Cao Y 2014 Org. Electron. 15 1197 [35] Chen D C, Zhou H, Liu M, ZhaoW M, Su S J and Cao Y 2013 Macromol. Rapid. Comm. 34 595 [36] He Z C, Zhong C M, Su S J, Xu M, Wu H B and Cao Y 2012 Nat. Photonics 6 591 [37] Liu S J, Zhang Z P, Chen D C, Duan C H, Lu J M, Zhang J, Huang F, Su S J, Chen J W and Cao Y 2013 Sci. China Chem. 56 1119 [38] Zhou Y H, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Brédas J L, Marder S R, Kahn A and Kippelen B 2012 Science 336 327 [39] Lin J, Dai X L, Liang X Y, Chen D S, Zheng X R, Li Y F, Deng Y Z, Du H, Ye Y X, Chen D, Lin C, Ma L Y, Bao Q Y, Zhang H B, Wang L J, Peng X G and Jin Y Z 2020 Adv. Funct. Mater. 30 1907265 [40] Wang C F, Li W D, Zeng Q, Liu X J, Fahlman M and Bao Q Y 2023 Chin. J. Chem. 41 3792 [41] Fahlman M, Fabiano S, Gueskine V, Simon D, BerggrenMand Crispin X 2019 Nat. Rev. Mater. 4 627 [42] Peng X, Hu L, Qin F, Zhou Y H and Chu P K 2018 Adv. Mater. Interfaces 5 1701404 [43] Kuwabara Y, Ogawa H, Inada H, Noma N and Shirota Y 1994 Adv. Mater. 6 677 [44] Ho S H, Liu S Y, Chen Y and So F 2015 J. Photon. Energy 5 057611 [45] Flores F and Tejedor C 1987 J. Phys. C: Solid State Phys. 20 145 [46] Vázquez H, Oszwaldowski R, Pou P, Ortega J, Pérez R, Flores F and Kahn A 2004 Europhys. Lett. 65 802 [47] Kahn A 2016 Materials Horizons 3 7 [48] Wurfel P 1982 J. Phys. C: Solid State Phys. 15 3967 [49] Koster L J A, Smits E C P, Mihailetchi V D and Blom P W M 2005 Phys Rev B 72 085205 [50] Röhr J A, Moia D, Haque S A, Kirchartz T and Nelson J 2018 J. Phys.: Condens. Matter 30 105901 [51] Griffiths D J and Schroeter D F 2018 Introduction to quantum mechanics (3rd Edn.) (Cambridge: Cambridge University Press) |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|