Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 078101    DOI: 10.1088/1674-1056/adcb1d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Spatial electron tunneling leads to space-charge-limited current in organic hole transport materials

Shaofeng Chen(陈绍枫)1,2,†, Yanfei Lu(鲁燕飞)1,2,†, Dongcheng Chen(陈东成)1,2,‡, and Shi-Jian Su(苏仕健)1,2
1 State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China;
2 Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, China
Abstract  The injection of electrical charge from an electrode into organic semiconductors directly influences the performance of organic optoelectronic devices. However, our understanding of the mechanisms behind charge injection remains incomplete. In this study, we explored the hole injection from an indium tin oxide (ITO) electrode into a hole transport layer (HTL) by employing various organic interlayers (ILs) with different ionization potentials (IPs). It was demonstrated that using O$_{2}$ plasma treatment onto an ITO surface and incorporating an interlayer (IL) with a higher IP between the ITO electrode and the HTL can substantially increase the hole current density. This improvement leads to the achievement of barrier-free injection and the establishment of space-charge-limited current. We propose two synergistic mechanisms of spatial electron tunneling that govern the injection characteristics: electron tunneling from the HTL across the IL to the electrode that establishes an electrostatic equilibrium with a zero-injection barrier and an electric-field-induced spatial tunneling effect that occurs during device operation with applying bias. This research offers a strategy to achieve space-charge-limited hole current and provides an explanatory framework for understanding the underlying physics of charge injection.
Keywords:  organic semiconductor      spatial electron tunneling      hole injection      indium tin oxide      work function  
Received:  14 January 2025      Revised:  31 March 2025      Accepted manuscript online:  10 April 2025
PACS:  42.70.Jk (Polymers and organics)  
  73.43.Jn (Tunneling)  
  81.05.Fb (Organic semiconductors)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFB0408000), Guangdong Provincial Department of Science and Technology (Grant No. 2019TQ05C778), and Guangdong Basic and Applied Basic Research Foundation (Grant No. 2019A1515011639).
Corresponding Authors:  Dongcheng Chen     E-mail:  mschendc@scut.edu.cn

Cite this article: 

Shaofeng Chen(陈绍枫), Yanfei Lu(鲁燕飞), Dongcheng Chen(陈东成), and Shi-Jian Su(苏仕健) Spatial electron tunneling leads to space-charge-limited current in organic hole transport materials 2025 Chin. Phys. B 34 078101

[1] Kroemer H 2000 Nobel Prize lecture
[2] 2012 Nat. Mater. 11 91
[3] Zheng Y, Gao J, Han C and Chen W 2021 Cell. Rep. Phys. Sci. 2 100298
[4] Zhang X J, Shao Z B, Zhang X H, He Y Y and Jie J S 2016 Adv. Mater. 28 10409
[5] Tung R T 2014 Appl. Phys. Rev. 1 011304
[6] Sachnik O, Tan X, Dou D, Haese C, Kinaret N, Lin K H, Andrienko D, Baumgarten M, Graf R,Wetzelaer G J A H, Michels J J and Blom PW M 2023 Nat. Mater. 22 1114
[7] Khodabakhshi E, Klockner B, Zentel R, Michels J J and Blom P W M 2019 Mater. Horiz. 6 2024
[8] Abbaszadeh D, Kunz A, Wetzelaer G A H, Michels J J, Craciun N I, Koynov K, Lieberwirth I and Blom P W M 2016 Nat. Mater. 15 628
[9] Kotadiya N B, Lu H, Mondal A, Ie Y, Andrienko D, Blom P W M and Wetzelaer G J A H 2018 Nat. Mater. 17 329
[10] Kotadiya N B, Mondal A, Blom P W M, Andrienko D and Wetzelaer G J A H 2019 Nat. Mater. 18 1182
[11] Mott N F and Gurney R W 1940 Electronic Processes in Ionic Crystals (Oxford: Oxford University Press)
[12] Ellmer K 2012 Nat. Photonics 6 808
[13] Ren Y, Zhao G Y and Chen Y Q 2011 Appl. Surf. Sci. 258 914
[14] Hecht D S, Hu L B and Irvin G 2011 Adv. Mater. 23 1482
[15] Chen L J, Niu G X, Niu L B and Song Q L 2022 Chin. Phys. B 31 038802
[16] Liu J M and Zhang D L 2023 Chin. Phys. B 32 064208
[17] Parker I D 1994 J. Appl. Phys. 75 1656
[18] Park Y, Choong V, Gao Y, Hsieh B R and Tang C W 1996 Appl. Phys. Lett. 68 2699
[19] Chen D C, Zhou H, Cai P, Sun S, Ye H, Su S J and Cao Y 2014 Appl. Phys. Lett. 104 053304
[20] Nehate S D, Prakash A, Mani P D and Sundaram K B 2018 ECS Journal of Solid State Science and Technology 7 P87
[21] HelanderMG,Wang Z B, Qiu J, GreinerMT, Puzzo D P, Liu ZWand Lu Z H 2011 Science 332 944
[22] Deng J, Hu D, Zhang Z, Zong B, Meng X, Sun Q, Shen B, Kang B and Silva S R P 2022 J. Alloys Compd. 911 164983
[23] Huang F, Liu H, Li X and Wang S 2022 Chem. Eng. J. 427 131356
[24] Shizuo T, Koji N and Yasunori T 1996 J. Phys. D: Appl. Phys. 29 2750
[25] Greiner M T, Helander M G, Tang W M, Wang Z B, Qiu J and Lu Z H 2011 Nat. Mater. 11 76
[26] Zhou X, Blochwitz J, Pfeiffer M, Nollau A, Fritz T and Leo K 2001 Adv. Funct. Mater. 11 310
[27] Koch N, Duhm S, Rabe J P, Vollmer A and Johnson R L 2005 Phys. Rev. Lett. 95 237601
[28] Park S M, Kim Y H, Yi Y, Oh H Y and Won Kim J 2010 Appl. Phys. Lett. 97 063308
[29] Wang Q, Yang J, Gerlach A, Schreiber F and Duhm S 2022 J. Phys.: Mater. 5 044010
[30] Duhm S 2022 Electronic Structure 4 034003
[31] Koch N 2021 Appl. Phys. Lett. 119 260501
[32] Zojer E, Taucher T C and Hofmann O T 2019 Adv. Mater. Interfaces 6 1900581
[33] Chen D, Zhang C, Zhou H, Li X, Wang Z, Su S and Cao Y 2015 ACS Appl. Mater. Inter. 7 3133
[34] Chen D C, Zhou H, Li X C, Liu M, Ye H, Su S J and Cao Y 2014 Org. Electron. 15 1197
[35] Chen D C, Zhou H, Liu M, ZhaoW M, Su S J and Cao Y 2013 Macromol. Rapid. Comm. 34 595
[36] He Z C, Zhong C M, Su S J, Xu M, Wu H B and Cao Y 2012 Nat. Photonics 6 591
[37] Liu S J, Zhang Z P, Chen D C, Duan C H, Lu J M, Zhang J, Huang F, Su S J, Chen J W and Cao Y 2013 Sci. China Chem. 56 1119
[38] Zhou Y H, Fuentes-Hernandez C, Shim J, Meyer J, Giordano A J, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan T M, Sojoudi H, Barlow S, Graham S, Brédas J L, Marder S R, Kahn A and Kippelen B 2012 Science 336 327
[39] Lin J, Dai X L, Liang X Y, Chen D S, Zheng X R, Li Y F, Deng Y Z, Du H, Ye Y X, Chen D, Lin C, Ma L Y, Bao Q Y, Zhang H B, Wang L J, Peng X G and Jin Y Z 2020 Adv. Funct. Mater. 30 1907265
[40] Wang C F, Li W D, Zeng Q, Liu X J, Fahlman M and Bao Q Y 2023 Chin. J. Chem. 41 3792
[41] Fahlman M, Fabiano S, Gueskine V, Simon D, BerggrenMand Crispin X 2019 Nat. Rev. Mater. 4 627
[42] Peng X, Hu L, Qin F, Zhou Y H and Chu P K 2018 Adv. Mater. Interfaces 5 1701404
[43] Kuwabara Y, Ogawa H, Inada H, Noma N and Shirota Y 1994 Adv. Mater. 6 677
[44] Ho S H, Liu S Y, Chen Y and So F 2015 J. Photon. Energy 5 057611
[45] Flores F and Tejedor C 1987 J. Phys. C: Solid State Phys. 20 145
[46] Vázquez H, Oszwaldowski R, Pou P, Ortega J, Pérez R, Flores F and Kahn A 2004 Europhys. Lett. 65 802
[47] Kahn A 2016 Materials Horizons 3 7
[48] Wurfel P 1982 J. Phys. C: Solid State Phys. 15 3967
[49] Koster L J A, Smits E C P, Mihailetchi V D and Blom P W M 2005 Phys Rev B 72 085205
[50] Röhr J A, Moia D, Haque S A, Kirchartz T and Nelson J 2018 J. Phys.: Condens. Matter 30 105901
[51] Griffiths D J and Schroeter D F 2018 Introduction to quantum mechanics (3rd Edn.) (Cambridge: Cambridge University Press)
[1] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[2] Electron emission induced by keV protons from tungsten surface at different temperatures
Li-Xia Zeng(曾利霞), Xian-Ming Zhou(周贤明), Rui Cheng(程锐), Yu Liu(柳钰), Xiao-An Zhang(张小安), and Zhong-Feng Xu(徐忠锋). Chin. Phys. B, 2022, 31(7): 073202.
[3] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[4] Investigation of electronic, elastic, and optical properties of topological electride Ca3Pb via first-principles calculations
Chang Sun(孙畅), Xin-Yu Cao(曹新宇), Xi-Hui Wang(王西惠), Xiao-Le Qiu(邱潇乐), Zheng-Hui Fang(方铮辉), Yu-Jie Yuan(袁宇杰), Kai Liu(刘凯), and Xiao Zhang(张晓). Chin. Phys. B, 2021, 30(5): 057104.
[5] Thin-film growth behavior of non-planar vanadium oxide phthalocyanine
Tian-Jiao Liu(刘天娇), Hua-Yan Xia(夏华艳), Biao Liu(刘标), Tim S Jones, Mei Fang(方梅), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2019, 28(8): 088101.
[6] Polarized red, green, and blue light emitting diodes fabricated with identical device configuration using rubbed PEDOT:PSS as alignment layer
Haoran Zhang(张皓然), Qi Zhang(张琪), Qian Zhang(张茜), Huizhi Sun(孙汇智), Gang Hai(海港), Jing Tong(仝静), Haowen Xu(徐浩文), Ruidong Xia(夏瑞东). Chin. Phys. B, 2019, 28(7): 078108.
[7] Photodetectors based on small-molecule organic semiconductor crystals
Jing Pan(潘京), Wei Deng(邓巍), Xiuzhen Xu(徐秀真), Tianhao Jiang(姜天昊), Xiujuan Zhang(张秀娟), Jiansheng Jie(揭建胜). Chin. Phys. B, 2019, 28(3): 038102.
[8] How to characterize capacitance of organic optoelectronic devices accurately
Hao-Miao Yu(于浩淼), Yun He(何鋆). Chin. Phys. B, 2018, 27(6): 067202.
[9] Performance of n-type silicon/silver composite anode material in lithium ion batteries: A study on effect of work function matching degree
Guo-Jun Xu(徐国军), Chen-Xin Jin(金晨鑫), Kai-Jie Kong(孔凯捷), Xi-Xi Yang(杨西西), Zhi-Hao Yue(岳之浩), Xiao-Min Li(李晓敏), Fu-Gen Sun(孙福根), Hai-Bin Huang(黄海宾), Lang Zhou(周浪). Chin. Phys. B, 2018, 27(10): 108201.
[10] Lowering the driving voltage and improving the luminance of blue fluorescent organic light-emitting devices by thermal annealing a hole injection layer of pentacene
Jian Gao(高建), Qian-Qian Yu(于倩倩), Juan Zhang(张娟), Yang Liu(刘洋), Ruo-Fei Jia(贾若飞), Jun Han(韩俊), Xiao-Ming Wu(吴晓明), Yu-Lin Hua(华玉林), Shou-Gen Yin(印寿根). Chin. Phys. B, 2017, 26(9): 098507.
[11] Study of a ternary blend system for bulk heterojunction thin film solar cells
Zubair Ahmad, Farid Touati, Shakoor R A, Al-Thani N J. Chin. Phys. B, 2016, 25(8): 080701.
[12] Alternating current characterization of nano-Pt(II) octaethylporphyrin (PtOEP) thin film as a new organic semiconductor
M Dongol, M M El-Nahass, A El-Denglawey, A A Abuelwafa, T Soga. Chin. Phys. B, 2016, 25(6): 067201.
[13] Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy
Wei Dang(党伟), Qing Liao(廖清), Peng-Cheng Mao(毛鹏程), Hong-Bing Fu(付红兵), Yu-Xiang Weng(翁羽翔). Chin. Phys. B, 2016, 25(5): 054207.
[14] Current spreading in GaN-based light-emitting diodes
Qiang Li(李强), Yufeng Li(李虞锋), Minyan Zhang(张敏妍), Wen Ding(丁文), Feng Yun(云峰). Chin. Phys. B, 2016, 25(11): 117102.
[15] Efficiency droop suppression in GaN-based light-emitting diodes by chirped multiple quantum well structure at high current injection
Zhao Yu-Kun (赵宇坤), Li Yu-Feng (李虞锋), Huang Ya-Ping (黄亚平), Wang Hong (王宏), Su Xi-Lin (苏喜林), Ding Wen (丁文), Yun Feng (云峰). Chin. Phys. B, 2015, 24(5): 056806.
No Suggested Reading articles found!