Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 027402    DOI: 10.1088/1674-1056/ada0b3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev  

Realization of robust Ohmic contact for semiconducting black arsenic by coupling with graphene

Xinjuan Cheng(程新娟) and Xuechao Zhai(翟学超)†
Department of Applied Physics, and MIIT Key Laboratory of Semiconductor Microstructures and Quantum Sensing, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  Ohmic contacts are fundamental components in semiconductor technology, facilitating efficient electrical connection and excellent device performance. We employ first-principles calculations to show that semimetallic graphene is a natural Ohmic contact partner of monolayer semiconducting black arsenic (BAs), for which the top of the valence band is below the Fermi energy of the order of 10$^2$ meV. The Ohmic contact arises from the giant Stark effect induced by van der Waals electron transfer from BAs to graphene, which does not destroy their respective band features. Remarkably, we show that this intrinsic Ohmic contact remains robust across a wide range of interlayer distances (adjustable by strain) or vertical electric fields, whereas the weak spin splitting of the order of 1 meV induced by symmetry breaking plays little part in Ohmic contact. These findings reveal the potential applications of graphene-BAs in ultralow dissipation transistors.
Keywords:  semiconductor technology      Ohmic contact      heterobilayer      Stark effect  
Received:  31 October 2024      Revised:  06 December 2024      Accepted manuscript online:  18 December 2024
PACS:  74.78.Fk (Multilayers, superlattices, heterostructures)  
  61.82.Fk (Semiconductors)  
  32.60.+i (Zeeman and Stark effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62374088 and 12074193).
Corresponding Authors:  Xuechao Zhai     E-mail:  zhaixuechao@njust.edu.cn

Cite this article: 

Xinjuan Cheng(程新娟) and Xuechao Zhai(翟学超)† Realization of robust Ohmic contact for semiconducting black arsenic by coupling with graphene 2025 Chin. Phys. B 34 027402

[1] Burghartz J N 2013 Guide to State-of-the-Art Electron Devices (Chichester: John Wiley & Sons Inc)
[2] Allain A, Kang J, Banerjee K and Kis A 2015 Nat. Mater. 14 1195
[3] Schulman D S, Arnold A J and Das S 2018 Chem. Soc. Rev. 47 3037
[4] Ni J, Fu Q, Ostrikov K, Gu X, Nan H and Xiao S 2022 Nanotechnology 33 062005
[5] Peng B, Cao K, Lan A H Y, Chen M, Lu Y and Chan P K L 2020 Adv. Mater. 32 2002281
[6] Gambino J P and Colgan E G 1998 Mater. Chem. Phys. 52 99
[7] Liu Y, Guo J, Zhu E, Liao L, Lee S J, Ding M, Shakir I, Gambin V, Huang Y and Duan X 2018 Nature 557 696
[8] Wang Y, Kim J C, Wu R J, Martinez J, Song X, Yang J, Zhao F, Mkhoyan A, Jeong H Y and Chhowalla M 2019 Nature 568 70
[9] Xu S Y, Yu M, Yuan D, Peng B, Yuan L, Zhang Y M and Jia R X 2024 Chin. Phys. B 33 017302
[10] Guo J, Zhu J, Liu S, Liu J, Xu J, Chen W, Zhou Y, Zhao X, Mi M and Yang M 2023 Chin. Phys. B 32 037303
[11] Xiong Y, Xu D, Feng Y, Zhang G, Lin P and Chen X 2023 Adv. Mater. 35 2206939
[12] Mohanta M K and Sarkar A D 2021 Appl. Surf. Sci. 540 148389
[13] Shen P C, Su C, Lin Y, Chou A S, Cheng C C, Park J H, Chiu M H, Lu A Y, Tang H L, Tavakoli M M, Pitner G, Ji X, Cai Z, Mao N, Wang J, Tung V, Li J, Bokor J, Zettl A, Wu C I, Palacios T, Li L J and Kong J 2021 Nature 593 211
[14] Xia F, Wang H, Hwang J C M, Castro Neto A H and Yang L 2019 Nat. Rev. Phys. 1 306
[15] Du G, Ke F, Han W, Chen W B, Xia Q, Kang J and Chen Y 2023 J. Phys. Chem. Lett. 14 8676
[16] Zhong M, Xia Q, Pan L, Liu Y, Chen Y, Deng H X, Li J and Wei Z 2018 Adv. Funct. Mater. 28 1802581
[17] Sheng F, Hua C, Cheng M, Hu J, Sun X, Tao Q, Lu H, Lu Y, Zhong M, Watanabe K, Taniguchi T, Xia Q, Xu Z A and Zheng Y 2021 Nature 593 56
[18] Kamal C and Ezawa M 2015 Phys. Rev. B 91 085423
[19] Gao C, Li R, Zhong M, Wang R, Wang M, Lin C, Huabf L, Cheng Y and Huang W 2020 J. Phys. Chem. Lett. 11 93
[20] Chen Y, Chen C, Kealhofer R, Liu H, Yuan Z, Jiang L, Suh J, Park J, Ko C, Choe H S, Avila J, Zhong M, Wei Z, Li J, Li S, Gao H, Liu Y, Analytis J, Xia Q, Asensio M and Wu J 2018 Adv. Mater. 30 1800754
[21] Zhang J, Chen S, Du G, Yu Y, Han W, Xia Q, Jin K and Chen Y 2023 Nano Lett. 23 8970
[22] Wang H, Zhong Y, Jiang W, Latini S, Xia S, Cui T, Li Z, Low T and Liu F 2024 Nano Lett. 24 2057
[23] Zhong M, Meng H, Liu S, Yang H, Shen W, Hu C, Yang J, Ren Z, Li B, Liu Y, He J, Xia Q, Li J and Wei Z 2021 ACS Nano 15 1701
[24] Geim A K and Grigorieva I V 2013 Nature 499 419
[25] Liu Y, Stradins P and Wei S H 2016 Sci. Adv. 2 e1600069
[26] Farmanbar M and Brocks G 2016 Adv. Electron. Mater. 2 1500405
[27] Novoselov K S, Fal’ko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[28] Saeed M, Palacios P, Wei M D, Baskent E, Fan C Y, Uzlu B, Wang K T, Hemmetter A, Wang Z, Neumaier D, Lemme M C and Negra R 2022 Adv. Mater. 34 2108437
[29] Hieu N N, Phuc H V, Ilyasov V V, Chien N D, Poklonski N A, Van Hieu N and Nguyen C V 2017 J. Appl. Phys. 122 104301
[30] Liu Y, Rodrigues J N B, Luo Y Z, Li L, Carvalho A, Yang M, Laksono E, Lu J, Bao Y, Xu H, Tan S J R, Qiu Z, Sow C H, Feng Y P, Castro Neto A H, Adam S, Lu J and Loh K P 2018 Nat. Nanotechnol. 13 828
[31] Padilha J E, Fazzio A and da Silva A J R 2015 Phys. Rev. Lett. 114 066803
[32] Sun M L, Chou J P, Yu J and Tang W 2017 Phys. Chem. Chem. Phys. 19 17324
[33] Yuan J, Wang F, Zhang Z, Song B, Yan S, Shang M H, Tong C and Zhou J 2023 Phys. Rev. B 108 125404
[34] Binh N T T, Nguyen C Q, Vu T V and Nguyen C V 2021 J. Phys. Chem. Lett. 12 3934
[35] Nguyen H T T, Obeid M M, Bafekry A, Idrees M, Vu T V, Phuc H V, Hieu N N, Hoa L T, Amin B and Nguyen C V 2020 Phys. Rev. B 102 075414
[36] Cao L, Ang L Y S, Wu Q and Ang L K 2019 Appl. Phys. Lett. 115 241601
[37] Liu Y, Qiu Z, Carvalho A, Bao Y, Xu H, Tan S J R, Liu W, Castro Neto A H, Loh K P and Lu J 2017 Nano Lett. 17 1970
[38] Yang X, Sa B, Lin P, Xu C, Zhu Q, Zhan H and Sun Z 2020 J. Phys. Chem. C 124 23699
[39] Mohanta M K, Arora A and De Sarkar A 2021 Phys. Rev. B 104 165421
[40] Guo H, Lang X, Tian X, Jiang W and Wang G 2022 Nanotechnology 33 425704
[41] Ebrahimi M R, Vazifehshenas T 2023 Appl. Surf. Sci. 616 156489
[42] Feng X, Lan C S, Liang S J, Lee C H, Yang S A and Ang Y S 2024 Adv. Func. Mater. 34 2309848
[43] Cao S, Li Z, Han J and Zhang Z 2024 Surf. Interfaces 46 104022
[44] Gao Z, He X, Li W, He Y and Xiong K 2024 Physica E 155 115837
[45] Liu X, Yang J, Deng X, Tang Z K and Cao L 2024 ACS Appl. Electron. Mater. 6 2568
[46] Chen Z, Qiu H, Cheng X, Cui J, Jin Z, Tian D, Zhang X, Xu K, Liu R, Niu W, Qiu L, Chen Y, Zhang C, Xi X, Song F, Yu R, Zhai X, Jin B, Zhang R and Wang X 2024 Nat. Commun. 15 2605
[47] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[48] Klimes J, Bowler D R and Michaelides A 2011 Phys. Rev. B 83 195131
[49] Bengtsson L 1999 Phys. Rev. B 59 12301
[50] Van Troeye B, Lherbier A, Charlier J C and Gonze X 2018 Phys. Rev. Mater. 2 074001
[51] Tung R T 2014 Appl. Phys. Rev. 1 011304
[52] Bardeen J 1947 Phys. Rev. 71 717
[53] Sanville E, Kenny S D, Smith R and Henkelman G 2007 J. Comput. Chem. 28 899
[1] Relativistic hyperpolarizabilities of atomic H, Li, and Be+ systems
Shan-Shan Lu(卢闪闪), Hong-Yuan Zheng(郑弘远), Zong-Chao Yan(严宗朝), James F. Babb, and Li-Yan Tang(唐丽艳). Chin. Phys. B, 2025, 34(1): 023202.
[2] Valley-selective manipulation of moiré excitons through optical Stark effect
Chenran Xu(徐晨燃), Jichen Zhou(周纪晨), Zhexu Shan(单哲旭), Wenjian Su(苏文健), Kenji Watanabe, Takashi Taniguchi, Dawei Wang(王大伟), and Yanhao Tang(汤衍浩). Chin. Phys. B, 2025, 34(1): 017102.
[3] Exciton-polaritons in a 2D hybrid organic-inorganic perovskite microcavity with the presence of optical Stark effect
Kenneth Coker, Chuyuan Zheng(郑楚媛), Joseph Roger Arhin, Kwame Opuni-Boachie Obour Agyekum, and Weili Zhang(张伟利). Chin. Phys. B, 2024, 33(3): 037102.
[4] Effect of surface modification on the radiation stability of diamond ohmic contacts
Lian-Xi Mu(牟恋希), Shang-Man Zhao(赵上熳), Peng Wang(王鹏), Xiao-Lu Yuan(原晓芦), Jin-Long Liu(刘金龙), Zhi-Fu Zhu(朱志甫), Liang-Xian Chen(陈良贤), Jun-Jun Wei(魏俊俊), Xiao-Ping Ou-Yang(欧阳晓平), and Cheng-Ming Li(李成明). Chin. Phys. B, 2024, 33(2): 026801.
[5] Physical mechanism of oxygen diffusion in the formation of Ga2O3 Ohmic contacts
Su-Yu Xu(徐宿雨), Miao Yu(于淼), Dong-Yang Yuan(袁东阳), Bo Peng(彭博), Lei Yuan(元磊), Yu-Ming Zhang(张玉明), and Ren-Xu Jia(贾仁需). Chin. Phys. B, 2024, 33(1): 017302.
[6] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[7] Mixed-field effect at the hyperfine level of 127I79Br in its rovibronic ground state: Toward field manipulation of cold molecules
Zhengbin Bao(包正斌), Defu Wang(王得富), Xuping Shao(邵旭萍),Yunxia Huang(黄云霞), and Xiaohua Yang(杨晓华). Chin. Phys. B, 2023, 32(12): 123302.
[8] Formation of high-density cold molecules via electromagnetic trap
Ya-Bing Ji(纪亚兵), Bin Wei(魏斌), Heng-Jiao Guo(郭恒娇), Qing Liu(刘青), Tao Yang(杨涛), Shun-Yong Hou(侯顺永), and Jian-Ping Yin(印建平). Chin. Phys. B, 2022, 31(10): 103201.
[9] Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
Jing-Cheng Wang(王旌丞), Hao Chen(陈浩), Lin-Feng Wan(万琳丰), Cao-Yuan Mu(牟草源), Yao-Feng Liu(刘尧峰), Shao-Heng Cheng(成绍恒), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2021, 30(9): 096803.
[10] Protection of isolated and active regions in AlGaN/GaN HEMTs using selective laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Qing Guo(郭清), and Kuang Sheng(盛况). Chin. Phys. B, 2021, 30(9): 097302.
[11] Hyperfine structures and the field effects of IBr molecule in its rovibronic ground state
Defu Wang(王得富), Xuping Shao(邵旭萍), Yunxia Huang(黄云霞), Chuanliang Li(李传亮), and Xiaohua Yang(杨晓华). Chin. Phys. B, 2021, 30(11): 113301.
[12] Ellipticity-dependent ionization yield for noble atoms
Hristina Deliba?i?, Violeta Petrovi?. Chin. Phys. B, 2019, 28(8): 083201.
[13] Laser-assisted Stark deceleration of CaF in its rovibronic ground (high-field-seeking) state
Yuefeng Gu(顾跃凤), Kai Chen(陈凯), Yunxia Huang(黄云霞), Xiaohua Yang(杨晓华). Chin. Phys. B, 2019, 28(4): 043702.
[14] Mechanism of Ti/Al/Ni/Au ohmic contacts to AlGaN/GaN heterostructures via laser annealing
Mingchen Hou(侯明辰), Gang Xie(谢刚), Kuang Sheng(盛况). Chin. Phys. B, 2019, 28(3): 037302.
[15] Quantum photodetachment of hydrogen negative ion in a harmonic potential subjected to static electric field
Azmat Iqbal, Kiran Humayun, Sana Maqsood, Saba Jawaid, Afaq Ahmad, Amin Ur Rahman, Bakht Amin Bacha. Chin. Phys. B, 2019, 28(2): 023201.
No Suggested Reading articles found!