Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(10): 107803    DOI: 10.1088/1674-1056/add7aa
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Josephson diode effect in altermagnet-based s-wave superconductor junction

Yi Jiang(蒋易), Han-Lin Liu(刘翰林)†, and Jun Wang(汪军)
School of Physics, Southeast University, Nanjing 210096, China
Abstract  We investigate the possible Josephson diode effect (JDE) in a two-dimensional (2D) nonmagnetic planar s-wave superconductor junction, which is constructed on a spin-collinear d-wave altermagnet (AM) material in the presence of Rashba spin-orbit interaction. It is demonstrated that the JDE is critically dependent on the crystalline axis of the AM relative to the current direction. The ${\rm d}_{x^2-y^2}$ magnetization symmetry can support a JDE whereas the ${\rm d}_{xy}$ symmetry does not facilitate it. The JDE efficiency can reach up to $40%$ and can be adjusted by an additional asymmetric gate voltage applied to the non-superconducting region of the junction, including control of its polarity. Our findings provide an electrical means to control the JDE within a non-magnetic AM-based superconducting junction.
Keywords:  Josephson diode effect      altermagnet      d-wave magnetization      Rashba spin-orbit interaction  
Received:  18 March 2025      Revised:  09 May 2025      Accepted manuscript online:  13 May 2025
PACS:  78.20.Jq (Electro-optical effects)  
  71.70.Fk (Strain-induced splitting)  
  72.80.Vp (Electronic transport in graphene)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12174051) and the Fundamental Research Funds for Central Universities.
Corresponding Authors:  Han-Lin Liu     E-mail:  hanlinl@seu.edu.cn

Cite this article: 

Yi Jiang(蒋易), Han-Lin Liu(刘翰林), and Jun Wang(汪军) Josephson diode effect in altermagnet-based s-wave superconductor junction 2025 Chin. Phys. B 34 107803

[1] Šmejkal L, Sinova J and Jungwirth T 2022 Phys. Rev. X 12 031042
[2] Šmejkal L, Sinova J and Jungwirth T 2022 Phys. Rev. X 12 040501
[3] Mazin I and The P R X E 2022 Phys. Rev. X 12 040002
[4] Mazin I 2023 Phys. Rev. B 107 L100418
[5] Autieri C 2024 Nature 626 482
[6] Feng Z, Zhou X, Šmejkal L,Wu L, Zhu Z, Guo H, González-Hernández R, Wang X, Yan H, Qin P, Zhang X, Wu H, Chen H, Meng Z, Liu L, Xia Z, Sinova J, Jungwirth T and Liu Z 2022 Nat. Electronics 5 735
[7] Occhialini C A, Martins L G P, Fan S, Bisogni V, Yasunami T, Musashi M, Kawasaki M, Uchida M, Comin R and Pelliciari J 2022 Phys. Rev. Mater. 6 084802
[8] Gonzalez Betancourt R D, Zubáč J, Gonzalez-Hernandez R, Geishendorf K, Šobán Z, Springholz G, Olejník K, Šmejkal L, Sinova J, Jungwirth T, Goennenwein S T B, Thomas A, Reichlová H, Zelezný J and Kriegner D 2023 Phys. Rev. Lett. 130 036702
[9] Šmejkal L, González-Hernández R, Jungwirth T and Sinova J J 2020 Sci. Adv. 6 eaaz8809
[10] Šmejkal L, Hellenes A B, González-Hernández R, Sinova J and Jungwirth T 2022 Phys. Rev. X 12 011028
[11] Shao D F, Zhang S H, Li M, Eom C B and Tsymba E Y 2021 Nat. Commun. 12 7061
[12] Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005
[13] Hirohata A, Yamada K, Nakatani Y, Prejbeanu I L, Diény B, Pirro P and Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711
[14] Jungwirth T, Marti X,Wadley P andWunderlich J 2016 Nat. Nanotechnol. 11 231
[15] Wang H, Lu C, Chen J, Liu Y, Yuan S L, Cheong S W, Dong S and Liu J M 2019 Nat. Commun. 10 2280
[16] Mazin I 2022 arXiv: 2203.05000 [cond-mat.supr-con]
[17] Sun C, Brataas A and Linder J 2023 Phys. Rev. B 108 054511
[18] Papaj M 2023 Phys. Rev. B 108 L060508
[19] Beenakker C W J and Vakhtel T 2023 Phys. Rev. B 108 075425
[20] Ouassou J A, Brataas A and Linder J 2023 Phys. Rev. Lett. 131 076003
[21] Zhu D, Zhuang Z Y, Wu Z and Yan Z 2023 Phys. Rev. B 108 184505
[22] Li Y X and Liu C C 2023 Phys. Rev. B 108 205410
[23] Cheng Q and Sun Q F 2024 Phys. Rev. B 109 024517
[24] Ando F, Miyasaka Y, Li T, Ishizuka J, Arakawa T, Shiota Y, Moriyama T, Yanase Y and Ono T 2020 Nature 584 373
[25] Wakatsuki R, Saito Y, Hoshino S, Itahashi Y M, Ideue T, Ezawa M, Iwasa Y and Nagaosa N 2017 Sci. Adv 3 e1602390
[26] Hoshino S,Wakatsuki R, Hamamoto K and Nagaosa N 2018 Phys. Rev. B 98 054510
[27] Bauriedl L, Bäuml C, Fuchs L, Baumgartner C, Paulik N, Bauer J M, Lin K-Q, Lupton J M, Taniguchi T,Watanabe K, Strunk C and Paradiso N 2022 Nat. Commun. 13 4266
[28] Itahashi Y M, Ideue T, Saito Y, Shimizu S, Ouchi T, Nojima T and Iwasa Y 2020 Sci. Adv. 6 eaay9120
[29] Suri D, Kamra A, Meier T N G, Kronseder M, BelzigW, Back C H and Strunk C 2022 Appl. Phys. Lett. 121 102601
[30] Miyasaka Y, Kawarazaki R, Narita H, Ando F, Ikeda Y, Hisatomi R, Daido A, Shiota Y, Moriyama T, Yanase Y and Ono T 2021 Appl. Phys. Express 14 073003
[31] Wu H, Wang Y, Xu Y, Sivakumar P K, Pasco C, Filippozzi U, Parkin S S P, Zeng Y J, McQueen T and Ali M N 2022 Nature 604 653
[32] Baumgartner C, Fuchs L, Costa A, Reinhardt S, Gronin S, Gardner G C, Lindemann T, Manfra M J, Faria Junior P E, Kochan D, Fabian J, Paradiso N and Strunk C 2022 Nat. Nanotechnol. 17 39
[33] Pal B, Chakraborty A, Sivakumar P K, Davydova M, Gopi A K, Pandeya A K, Krieger J A, Zhang Y, Date M, Ju S, Yuan N, Schröter N B M, Fu L and Parkin S S P 2022 Nat. Phys. 18 1228
[34] Baumgartner C, Fuchs L, Costa A, Picó-Cortés J, Reinhardt S, Gronin S, Gardner G C, Lindemann T, Manfra M J, Faria Junior P E, Kochan D, Fabian J, Paradiso N and Strunk C 2022 J. Phys.: Condens. Matter 34 154005
[35] Gupta M, Graziano G V, Pendharkar M, Dong J T, Dempsey C P, Palmstrm C and Pribiag V S 2023 Nat. Commun. 14 3078
[36] Bocquillon E, Deacon R S, Wiedenmann J, Leubner P, Klapwijk T M, Brüne C, Ishibashi K, Buhmann H and Molenkamp L W 2017 Nat. Nanotechnol. 12 137
[37] Lyu Y Y, Jiang J, Wang Y L, Xiao Z L, Dong S, Chen Q H, Milošević M V, Wang H, Divan R, Pearson J E, Wu P, Peeters F M and Kwok W K 2021 Nat. Commun. 12 2703
[38] Díez-Mérida J, Díez-Carlón A, Yang S Y, Xie Y M, Gao X J, Senior J, Watanabe K, Taniguchi T, Lu X, Higginbotham A P, Law K T and Efetov D K 2023 Nat. Commun. 14 2396
[39] Daido A, Ikeda Y and Yanase Y 2022 Phys. Rev. Lett. 128 037001
[40] Yuan N F Q and Fu L 2022 Proc. Natl. Acad. Sci. USA 119 15 e2119548119
[41] He J J, Tanaka Y and Nagaosa N 2022 New J. Phys. 24 053014
[42] Ilić S and Bergeret F S 2022 Phys. Rev. Lett. 128 177001
[43] Scammell H D, Li J I A and Scheurer M S 2022 2D Mater. 9 025027
[44] Daido A and Yanase Y 2022 Phys. Rev. B 106 205206
[45] Hosur P and Palacios D 2023 Phys. Rev. B 108 094513
[46] Davydova M, Prembabu S and Fu L 2022 Sci. Adv 8 eabo0309
[47] Lu B, Ikegaya S, Burset P, Tanaka Y and Nagaosa N 2023 Phys. Rev. Lett. 131 096001
[48] Hu J X, Sun Z T, Xie Y M and Law K T 2023 Phys. Rev. Lett. 130 266003
[49] Steiner J F, Melischek L, Trahms M, Franke K J and Von Oppen F 2023 Phys. Rev. Lett. 130 177002
[50] Souto R S, Leijnse M and Schrade C 2022 Phys. Rev. Lett. 129 267702
[51] Cayao J, Nagaosa N and Tanaka Y 2024 Phys. Rev. B 109 L081405
[52] Wang J, Jiang Y, Wang J J and Liu J F 2024 Phys. Rev. B 109 075412
[53] Ding Z, Wang D, Li M, Tao Y and Wang J 2024 Phys. Rev. B 110 155405
[54] Fu P H, Xu Y, Yang S A, Lee C H, Ang Y S and Liu J F 2024 Phys. Rev. Appl. 21 054057
[55] Šmejkal L, MacDonald A H, Sinova J, Nakatsuji S and Jungwirth T 2022 Nat. Rev. Mater. 7 482
[56] Datta S 2000 Superlattice Microst. 28 253
[57] Wang J, Hao L and Liu J F 2016 Phys. Rev. B 93 155405
[58] Hou Y, Nichele F, Chi H, Lodesani A, Wu Y, Ritter M F, Haxell D Z, Davydova M, Ilić S, Glezakou-Elbert O, Varambally A, Bergeret F S, Kamra A, Fu L, Lee P A and Moodera J S 2023 Phys. Rev. Lett. 131 027001
[1] Recent progress on electron- and magnon-mediated torques
Jia-Min Lai(来嘉敏), Bingyue Bian(边冰玥), Zhonghai Yu(于忠海), Kaiwei Guo(郭凯卫), Yajing Zhang(张雅静), Pengnan Zhao(赵鹏楠), Xiaoqian Zhang(张霄倩), Chunyang Tang(汤春阳), Jiasen Cao(曹家森), Zhiyong Quan(全志勇), Fei Wang(王飞), and Xiaohong Xu(许小红). Chin. Phys. B, 2025, 34(10): 107501.
[2] Alternating spin splitting of electronic and magnon bands in two-dimensional altermagnetic materials
Qian Wang(王乾), Da-Wei Wu(邬大为), Guang-Hua Guo(郭光华), Meng-Qiu Long(龙孟秋), and Yun-Peng Wang(王云鹏). Chin. Phys. B, 2024, 33(9): 097507.
[3] Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature
Ying-Jie Chen(陈英杰) and Feng-Lan Shao(邵凤兰). Chin. Phys. B, 2021, 30(11): 110304.
[4] Spin flip in single quantum ring with Rashba spin-orbit interation
Duan-Yang Liu(刘端阳), Jian-Bai Xia(夏建白). Chin. Phys. B, 2018, 27(3): 037201.
[5] Topological phase in one-dimensional Rashba wire
Sa-Ke Wang(汪萨克), Jun Wang(汪军), Jun-Feng Liu(刘军丰). Chin. Phys. B, 2016, 25(7): 077305.
[6] Thermodynamic behaviour of Rashba quantum dot in the presence of magnetic field
Sukirti Gumber, Manoj Kumar, Pradip Kumar Jha, Man Mohan. Chin. Phys. B, 2016, 25(5): 056502.
[7] Thermospin effects in parallel coupled double quantum dots in the presence of the Rashba spin–orbit interaction and Zeeman splitting
Xue Hui-Jie(薛惠杰), LŰ Tian-Quan(吕天全), Zhang Hong-Chen(张红晨), Yin Hai-Tao(尹海涛), Cui Lian(催莲), and He Ze-Long(贺泽龙) . Chin. Phys. B, 2012, 21(3): 037201.
[8] Effects of spin-orbit interaction and magnetic field on the electron transport in quasi-1D ferromagnetic/semiconductor/ferromagnetic system
Li Yu-Xian (李玉现), Li Bo-Zang (李伯臧). Chin. Phys. B, 2005, 14(5): 1021-1024.
No Suggested Reading articles found!