Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(7): 076101    DOI: 10.1088/1674-1056/adcb22
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Performance enhancement of IGZO thin-film transistors via ultra-thin HfO2 and the implementation of logic device functionality

Xuyang Li(栗旭阳)1,†, Bin Liu(刘斌)2, Xianwen Liu(刘贤文)2, Shuo Zhang(张硕)2, Congyang Wen(温丛阳)2, Jin Zhang(张进)1, Haifeng Liang(梁海锋)1, Guangcai Yuan(袁广才)3, Jianshe Xue(薛建设)3, and Zhinong Yu(喻志农)2,‡
1 School of Optoelectronic Engineering, Xi'an Technological University, Xi'an 710021, China;
2 School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;
3 Beijing BOE Display Technology Co., Ltd., Beijing 100176, China
Abstract  The enhancement of mobility has always been a research focus in the field of thin-film transistors (TFTs). In this paper, we report a method using ultra-thin HfO$_{2}$ to improve the electrical performance of indium gallium zinc oxide (IGZO) TFTs. HfO$_{2}$ not only repairs the surface morphology of the active layer, but also increases the carrier concentration. When the thickness of the HfO$_{2}$ film was 3 nm, the mobility of the device was doubled (14.9 cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1} \to 29.6 $ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$), and the device exhibited excellent logic device performance. This paper provides a simple and effective method to enhance the electrical performance of IGZO TFTs, offering new ideas and experimental foundation for research into high-performance metal oxide (MO) TFTs.
Keywords:  thin-film transistors      metal oxide      indium gallium zinc oxide (IGZO)      logic devices      TCAD simulation  
Received:  28 February 2025      Revised:  25 March 2025      Accepted manuscript online:  10 April 2025
PACS:  61.43.Dq (Amorphous semiconductors, metals, and alloys)  
  61.82.Fk (Semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62441407), the Natural Science Basic Research Program of Shaanxi (Grant No. 2024JCYBQN- 0631), the Natural Science Foundation of Shaanxi Provincial Department of Education (Grant No. 23JK0482), and the Shaanxi Province Key R & D Program General Project - Industrial Field (Grant No. 2024GX-YBXM-085).
Corresponding Authors:  Xuyang Li, Zhinong Yu     E-mail:  lixuyang@xatu.edu.cn;znyu@bit.edu.cn

Cite this article: 

Xuyang Li(栗旭阳), Bin Liu(刘斌), Xianwen Liu(刘贤文), Shuo Zhang(张硕), Congyang Wen(温丛阳), Jin Zhang(张进), Haifeng Liang(梁海锋), Guangcai Yuan(袁广才), Jianshe Xue(薛建设), and Zhinong Yu(喻志农) Performance enhancement of IGZO thin-film transistors via ultra-thin HfO2 and the implementation of logic device functionality 2025 Chin. Phys. B 34 076101

[1] Saha J K, Billah M M and Jang J 2021 ACS Appl. Mater. Interfaces 13 37350
[2] Zhang S, Weng L, Liu B, Kuang D, Liu X W, Jiang B Q, Zhang G C, Bao Z C, Yuan G C, Guo J, Ning C, Shi DWand Yu Z N 2023 Vacuum 215 112225
[3] Seul H J, Kim M J, Yang H J, Cho M H, SongWB and Jeong J K 2020 ACS Appl. Mater. Interfaces 12 33887
[4] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488
[5] Xu X, He G, Wang L, Wang W, Jiang S and Fang Z 2023 J. Mater. Sci. Technol. 141 100
[6] Park J, Go S, Chae W, Ryoo C I, Kim C, Noh H, Kim S, Du A B, Cho I T, Yun P S, Bae J U, Park Y S, Kim S and Kim D H 2024 Sci. Rep. 14 10067
[7] Xiong W, Huo J Y, Wu X H, Liu W J, Zhang D W and Ding S J 2023 Chin. Phys. B 32 018503
[8] Song S, Liang H L, Huo W X, Zhang G, Zhang Y H, Wang J W and Mei Z X 2024 Chin. Phys. Lett. 41 068501
[9] Yang G, Song W, Yu Z, Huang T, Cao J, Xu Y, Sun H, Sun W and Wu W 2024 IEEE Trans. Electron Devices 71 2990
[10] Weng L, Zhang S, Kuang D, Liu B, Liu X W, Jiang B Q, Zhang G C, Bao Z C, Ning C, Shi D W, Guo J, Yuan G C and Yu Z N 2023 IEEE Trans. Electron Devices 70 4186
[11] Um J G, Jeong D Y, Jung Y, Moon J K, Jung Y H, Kim S, Kim S H, Lee J S and Jang J 2018 Adv. Electron. Mater. 5 1800617
[12] Huang W C, Li Y, Chang N H, Hong W J, Wu S Y, Liao S Y, Hsueh W J, Wang C M and Huang C Y 2024 Sens. Actuators B: Chem. 417 136175
[13] Kim M Y, Kim H W, Oh C, Park S H and Kim B S 2023 ACS Appl. Mater. Interfaces 6 435
[14] Lee S H, Lee S, Jang S C, On N, Kim H S and Jeong J K 2021 J. Alloys Compd. 862 158009
[15] Kwon J Y and Jeong J K 2015 Semicond. Sci. Technol. 30 024002
[16] He F, Wang Y, Yuan H, Lin Z, Su J, Zhang J, Chang J and Hao Y 2021 Ceram. Int. 47 35029
[17] Han Z, Han J and Abliz A 2024 Appl. Surf. Sci. 648 158995
[18] Wu J L, Lin H Y, Su B Y, Chen Y C, Chu S Y, Liu S Y, Chang C C and Wu C J 2014 J. Alloys Compd. 592 35
[19] Lee H, Lee S, Kim Y, Siddik A B, Billah M M, Lee J and Jang J 2020 IEEE Electron Device Lett. 41 1520
[20] Park J C and Lee H N 2012 IEEE Electron Device Lett. 33 818
[21] Bae S D, Kwon S H, Jeong H S and Kwon H I 2017 Semicond. Sci. Technol. 32 075006
[22] Shan F, Lee J Y, Kim H S, Sun H Z, Choi S G, Heo K J, Koh J H and Kim S J 2021 Electron. Mater. Lett. 17 222
[23] Cheng J, Yu Z, Li X, Guo J, Yan W, Xue J and Xue W 2018 IEEE Trans. Electron Devices 65 136
[24] Hu M, Xu L, Zhang X, Song Z and Luo S 2022 Appl. Surf. Sci. 604 154621
[25] Kim J W and Lee S Y 2024 J. Korean Ceram. Soc. 61 941
[26] Nguyen A H T, Nguyen M C, Nguyen A D, Park N H, Jeon S J, Kwon D and Choi R 2023 IEEE Trans. Electron Devices 70 1085
[27] Zhou X, Han D, Dong J, Li H, Yi Z, Zhang X and Wang Y 2020 IEEE Electron Device Lett. 41 569
[28] Park J M, Kim H D, Jang S C, Kim M J, Chung K B, Kim Y J and Kim H S 2020 IEEE Trans. Electron Devices 67 4924
[29] Zhang S, Liu B, Zhang X, Wen C Y, Sun H R, Liu X W, Yao Q, Zi X R, Bao Z C, Xiao Z R, Zhang Y S, Yuan G C, Guo J, Ning C, Shi D W, Wang F and Yu Z N 2024 Mater. Sci. Semicond. Process 173 108093
[30] Kim J, Park J B, Zheng D, Kim J S, Cheng Y, Park S K, Huang W, Marks T J and Facchetti A 2022 Adv. Mater. 34 2205871
[31] Zhang Q, Xia G, Li H, Sun Q, Gong H andWang S 2024 Nanotechnology 35 125202
[32] Liu A, Liu G, Zhu H, Shin B, Fortunato E, Martins R and Shan F 2016 J. Mater. Chem. C 4 4478
[33] Kai Y, Zhao Y, Wang J, Lu C, Shan Y, Guo Z, Jiang C and Li L 2022 IEEE Electron Device Lett. 43 1681
[34] Chen Y, Duan X, Ma X, Yuan P, Jiao Z, Shen Y, Chai L, Luan Q, Xiang J, Geng D, Wang G and Zhao C 2024 J. Semicond. 45 072301
[35] Xiao N, Yuvaraja S, Chettri D, Liu Z, Lu Y, Liao C, Tang X and Li X 2023 J. Phys. D: Appl. Phys. 56 425102
[36] Xiao B, Yu X and Watanabe S 2019 ACS Appl. Electron. Mater. 1 585
[37] You B C, Wang S J, Ko R M, Wu J H and Lin C E 2020 Jpn. J. Appl. Phys. 59 SGGJ03
[38] Lee K M, Kim N, Lee J K, Lee H J, Kim S Y and Kim T G 2025 Appl. Surf. Sci. 686 162102
[39] Socratous J, Banger K K, Vaynzof Y, Sadhanala A, Brown A D, Sepe A, Steiner U and Sirringhaus H 2015 Adv. Funct. Mater. 25 1873
[40] Nomura K, Kamiya T, Ohta H, Ueda K, Hirano M and Hosono H 2004 Appl. Phys. Lett. 85 1993
[41] Kamiya T, Nomura K and Hosono H 2009 J. Disp. Technol. 5 462
[42] Kim D G, Lee W B, Lee S, Koh J, Kuh B and Park J S 2023 ACS Appl. Mater. Interfaces 15 36550
[43] Zhang T, Wei Y F, Zhang C S, He G, Li T J and Lin D 2024 ACS Appl. Mater. Interfaces 16 36577
[1] Enhancing p-d hybridization via synergistic regulation of spatial and energetic orbital overlaps in Ba-doped LaNiO3 epitaxial films for oxygen evolution activity
Yingjia Li(李莹嘉), Xiang Xu(徐翔), Xiaoyu Qiu(邱晓宇), Jie Tu(涂杰), Zijian Chen(陈子健), Yujie Zhou(周雨洁), Zhao Guan(关赵), Youyuan Zhang(张友圆), Wen-Yi Tong(童文旖), Shaohui Xu(徐少辉), Ni Zhong(钟妮), Pinghua Xiang(向平华), Chun-Gang Duan(段纯刚), and Binbin Chen(陈斌斌). Chin. Phys. B, 2025, 34(5): 057101.
[2] High-throughput discovery of kagome materials in transition metal oxide monolayers
Renhong Wang(王人宏), Cong Wang(王聪), Ruixuan Li(李睿宣), Deping Guo(郭的坪), Jiaqi Dai(戴佳琦), Canbo Zong(宗灿波), Weihan Zhang(张伟涵), and Wei Ji(季威). Chin. Phys. B, 2025, 34(4): 046801.
[3] Temperature dependence of single-event transients in SiGe heterojunction bipolar transistors for cryogenic applications
Xiaoyu Pan(潘霄宇), Hongxia Guo(郭红霞), Yahui Feng(冯亚辉), Yinong Liu(刘以农), Jinxin Zhang(张晋新), Jun Fu(付军), and Guofang Yu(喻国芳). Chin. Phys. B, 2023, 32(9): 098503.
[4] Low-temperature ferromagnetism in tensile-strained LaCoO2.5 thin film
Yang-Yang Fan(范洋洋), Jing Wang(王晶), Feng-Xia Hu(胡凤霞), Bao-He Li(李宝河), Ai-Cong Geng(耿爱丛), Zhuo Yin(殷卓), Cheng Zhang(张丞), Hou-Bo Zhou(周厚博), Meng-Qin Wang(王梦琴), Zi-Bing Yu(尉紫冰), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2023, 32(8): 087504.
[5] Synergistic effect of total ionizing dose on single-event gate rupture in SiC power MOSFETs
Rongxing Cao(曹荣幸), Kejia Wang(汪柯佳), Yang Meng(孟洋), Linhuan Li(李林欢), Lin Zhao(赵琳), Dan Han(韩丹), Yang Liu(刘洋), Shu Zheng(郑澍), Hongxia Li(李红霞), Yuqi Jiang(蒋煜琪), Xianghua Zeng(曾祥华), and Yuxiong Xue(薛玉雄). Chin. Phys. B, 2023, 32(6): 068502.
[6] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[7] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[8] Strategy to mitigate single event upset in 14-nm CMOS bulk FinFET technology
Dong-Qing Li(李东青), Tian-Qi Liu(刘天奇), Pei-Xiong Zhao(赵培雄), Zhen-Yu Wu(吴振宇), Tie-Shan Wang(王铁山), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(5): 056106.
[9] An insulated-gate bipolar transistor model based on the finite-volume charge method
Manhong Zhang(张满红) and Wanchen Wu(武万琛). Chin. Phys. B, 2022, 31(12): 128501.
[10] Device topological thermal management of β-Ga2O3 Schottky barrier diodes
Yang-Tong Yu(俞扬同), Xue-Qiang Xiang(向学强), Xuan-Ze Zhou(周选择), Kai Zhou(周凯), Guang-Wei Xu(徐光伟), Xiao-Long Zhao(赵晓龙), and Shi-Bing Long(龙世兵). Chin. Phys. B, 2021, 30(6): 067302.
[11] Degradation and its fast recovery in a-IGZO thin-film transistors under negative gate bias stress
Jianing Guo(郭佳宁), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Huaisheng Wang(王槐生). Chin. Phys. B, 2021, 30(11): 118102.
[12] Investigation of gate oxide traps effect on NAND flash memory by TCAD simulation
He-Kun Zhang(章合坤), Xuan Tian(田璇), Jun-Peng He(何俊鹏), Zhe Song(宋哲), Qian-Qian Yu(蔚倩倩), Liang Li(李靓), Ming Li(李明), Lian-Cheng Zhao(赵连城), Li-Ming Gao(高立明). Chin. Phys. B, 2020, 29(3): 038501.
[13] A systematic study of light dependency of persistent photoconductivity in a-InGaZnO thin-film transistors
Yalan Wang(王雅兰), Mingxiang Wang(王明湘), Dongli Zhang(张冬利), and Huaisheng Wang(王槐生). Chin. Phys. B, 2020, 29(11): 118101.
[14] Research on SEE mitigation techniques using back junction and p+ buffer layer in domestic non-DTI SiGe HBTs by TCAD
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏). Chin. Phys. B, 2019, 28(6): 068503.
[15] Antiferromagnetic interlayer coupling of (111)-oriented La0.67Sr0.33MnO3/SrRuO3 superlattices
Hui Zhang(张慧), Jing Zhang(张静), Jin-E Zhang(张金娥), Fu-Rong Han(韩福荣), Hai-Lin Huang(黄海林), Jing-Hua Song(宋京华), Bao-Gen Shen(沈保根), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2019, 28(3): 037501.
No Suggested Reading articles found!