| CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Performance enhancement of IGZO thin-film transistors via ultra-thin HfO2 and the implementation of logic device functionality |
| Xuyang Li(栗旭阳)1,†, Bin Liu(刘斌)2, Xianwen Liu(刘贤文)2, Shuo Zhang(张硕)2, Congyang Wen(温丛阳)2, Jin Zhang(张进)1, Haifeng Liang(梁海锋)1, Guangcai Yuan(袁广才)3, Jianshe Xue(薛建设)3, and Zhinong Yu(喻志农)2,‡ |
1 School of Optoelectronic Engineering, Xi'an Technological University, Xi'an 710021, China; 2 School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; 3 Beijing BOE Display Technology Co., Ltd., Beijing 100176, China |
|
|
|
|
Abstract The enhancement of mobility has always been a research focus in the field of thin-film transistors (TFTs). In this paper, we report a method using ultra-thin HfO$_{2}$ to improve the electrical performance of indium gallium zinc oxide (IGZO) TFTs. HfO$_{2}$ not only repairs the surface morphology of the active layer, but also increases the carrier concentration. When the thickness of the HfO$_{2}$ film was 3 nm, the mobility of the device was doubled (14.9 cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1} \to 29.6 $ cm$^{2}\cdot$V$^{-1}\cdot$s$^{-1}$), and the device exhibited excellent logic device performance. This paper provides a simple and effective method to enhance the electrical performance of IGZO TFTs, offering new ideas and experimental foundation for research into high-performance metal oxide (MO) TFTs.
|
Received: 28 February 2025
Revised: 25 March 2025
Accepted manuscript online: 10 April 2025
|
|
PACS:
|
61.43.Dq
|
(Amorphous semiconductors, metals, and alloys)
|
| |
61.82.Fk
|
(Semiconductors)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62441407), the Natural Science Basic Research Program of Shaanxi (Grant No. 2024JCYBQN- 0631), the Natural Science Foundation of Shaanxi Provincial Department of Education (Grant No. 23JK0482), and the Shaanxi Province Key R & D Program General Project - Industrial Field (Grant No. 2024GX-YBXM-085). |
Corresponding Authors:
Xuyang Li, Zhinong Yu
E-mail: lixuyang@xatu.edu.cn;znyu@bit.edu.cn
|
Cite this article:
Xuyang Li(栗旭阳), Bin Liu(刘斌), Xianwen Liu(刘贤文), Shuo Zhang(张硕), Congyang Wen(温丛阳), Jin Zhang(张进), Haifeng Liang(梁海锋), Guangcai Yuan(袁广才), Jianshe Xue(薛建设), and Zhinong Yu(喻志农) Performance enhancement of IGZO thin-film transistors via ultra-thin HfO2 and the implementation of logic device functionality 2025 Chin. Phys. B 34 076101
|
[1] Saha J K, Billah M M and Jang J 2021 ACS Appl. Mater. Interfaces 13 37350 [2] Zhang S, Weng L, Liu B, Kuang D, Liu X W, Jiang B Q, Zhang G C, Bao Z C, Yuan G C, Guo J, Ning C, Shi DWand Yu Z N 2023 Vacuum 215 112225 [3] Seul H J, Kim M J, Yang H J, Cho M H, SongWB and Jeong J K 2020 ACS Appl. Mater. Interfaces 12 33887 [4] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488 [5] Xu X, He G, Wang L, Wang W, Jiang S and Fang Z 2023 J. Mater. Sci. Technol. 141 100 [6] Park J, Go S, Chae W, Ryoo C I, Kim C, Noh H, Kim S, Du A B, Cho I T, Yun P S, Bae J U, Park Y S, Kim S and Kim D H 2024 Sci. Rep. 14 10067 [7] Xiong W, Huo J Y, Wu X H, Liu W J, Zhang D W and Ding S J 2023 Chin. Phys. B 32 018503 [8] Song S, Liang H L, Huo W X, Zhang G, Zhang Y H, Wang J W and Mei Z X 2024 Chin. Phys. Lett. 41 068501 [9] Yang G, Song W, Yu Z, Huang T, Cao J, Xu Y, Sun H, Sun W and Wu W 2024 IEEE Trans. Electron Devices 71 2990 [10] Weng L, Zhang S, Kuang D, Liu B, Liu X W, Jiang B Q, Zhang G C, Bao Z C, Ning C, Shi D W, Guo J, Yuan G C and Yu Z N 2023 IEEE Trans. Electron Devices 70 4186 [11] Um J G, Jeong D Y, Jung Y, Moon J K, Jung Y H, Kim S, Kim S H, Lee J S and Jang J 2018 Adv. Electron. Mater. 5 1800617 [12] Huang W C, Li Y, Chang N H, Hong W J, Wu S Y, Liao S Y, Hsueh W J, Wang C M and Huang C Y 2024 Sens. Actuators B: Chem. 417 136175 [13] Kim M Y, Kim H W, Oh C, Park S H and Kim B S 2023 ACS Appl. Mater. Interfaces 6 435 [14] Lee S H, Lee S, Jang S C, On N, Kim H S and Jeong J K 2021 J. Alloys Compd. 862 158009 [15] Kwon J Y and Jeong J K 2015 Semicond. Sci. Technol. 30 024002 [16] He F, Wang Y, Yuan H, Lin Z, Su J, Zhang J, Chang J and Hao Y 2021 Ceram. Int. 47 35029 [17] Han Z, Han J and Abliz A 2024 Appl. Surf. Sci. 648 158995 [18] Wu J L, Lin H Y, Su B Y, Chen Y C, Chu S Y, Liu S Y, Chang C C and Wu C J 2014 J. Alloys Compd. 592 35 [19] Lee H, Lee S, Kim Y, Siddik A B, Billah M M, Lee J and Jang J 2020 IEEE Electron Device Lett. 41 1520 [20] Park J C and Lee H N 2012 IEEE Electron Device Lett. 33 818 [21] Bae S D, Kwon S H, Jeong H S and Kwon H I 2017 Semicond. Sci. Technol. 32 075006 [22] Shan F, Lee J Y, Kim H S, Sun H Z, Choi S G, Heo K J, Koh J H and Kim S J 2021 Electron. Mater. Lett. 17 222 [23] Cheng J, Yu Z, Li X, Guo J, Yan W, Xue J and Xue W 2018 IEEE Trans. Electron Devices 65 136 [24] Hu M, Xu L, Zhang X, Song Z and Luo S 2022 Appl. Surf. Sci. 604 154621 [25] Kim J W and Lee S Y 2024 J. Korean Ceram. Soc. 61 941 [26] Nguyen A H T, Nguyen M C, Nguyen A D, Park N H, Jeon S J, Kwon D and Choi R 2023 IEEE Trans. Electron Devices 70 1085 [27] Zhou X, Han D, Dong J, Li H, Yi Z, Zhang X and Wang Y 2020 IEEE Electron Device Lett. 41 569 [28] Park J M, Kim H D, Jang S C, Kim M J, Chung K B, Kim Y J and Kim H S 2020 IEEE Trans. Electron Devices 67 4924 [29] Zhang S, Liu B, Zhang X, Wen C Y, Sun H R, Liu X W, Yao Q, Zi X R, Bao Z C, Xiao Z R, Zhang Y S, Yuan G C, Guo J, Ning C, Shi D W, Wang F and Yu Z N 2024 Mater. Sci. Semicond. Process 173 108093 [30] Kim J, Park J B, Zheng D, Kim J S, Cheng Y, Park S K, Huang W, Marks T J and Facchetti A 2022 Adv. Mater. 34 2205871 [31] Zhang Q, Xia G, Li H, Sun Q, Gong H andWang S 2024 Nanotechnology 35 125202 [32] Liu A, Liu G, Zhu H, Shin B, Fortunato E, Martins R and Shan F 2016 J. Mater. Chem. C 4 4478 [33] Kai Y, Zhao Y, Wang J, Lu C, Shan Y, Guo Z, Jiang C and Li L 2022 IEEE Electron Device Lett. 43 1681 [34] Chen Y, Duan X, Ma X, Yuan P, Jiao Z, Shen Y, Chai L, Luan Q, Xiang J, Geng D, Wang G and Zhao C 2024 J. Semicond. 45 072301 [35] Xiao N, Yuvaraja S, Chettri D, Liu Z, Lu Y, Liao C, Tang X and Li X 2023 J. Phys. D: Appl. Phys. 56 425102 [36] Xiao B, Yu X and Watanabe S 2019 ACS Appl. Electron. Mater. 1 585 [37] You B C, Wang S J, Ko R M, Wu J H and Lin C E 2020 Jpn. J. Appl. Phys. 59 SGGJ03 [38] Lee K M, Kim N, Lee J K, Lee H J, Kim S Y and Kim T G 2025 Appl. Surf. Sci. 686 162102 [39] Socratous J, Banger K K, Vaynzof Y, Sadhanala A, Brown A D, Sepe A, Steiner U and Sirringhaus H 2015 Adv. Funct. Mater. 25 1873 [40] Nomura K, Kamiya T, Ohta H, Ueda K, Hirano M and Hosono H 2004 Appl. Phys. Lett. 85 1993 [41] Kamiya T, Nomura K and Hosono H 2009 J. Disp. Technol. 5 462 [42] Kim D G, Lee W B, Lee S, Koh J, Kuh B and Park J S 2023 ACS Appl. Mater. Interfaces 15 36550 [43] Zhang T, Wei Y F, Zhang C S, He G, Li T J and Lin D 2024 ACS Appl. Mater. Interfaces 16 36577 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|