INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Influences of grain size and microstructure on optical properties of microcrystalline diamond films |
Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君) |
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China |
|
|
Abstract Microcrystalline diamond (MCD) films with different grain sizes ranging from 160 nm to 2200 nm are prepared by using a hot filament chemical vapor deposition (HFCVD) system, and the influences of grain size and structural features on optical properties are investigated. The results show that the film with grain size in a range of 160 nm-310 nm exhibits a higher refractive index in a range of (2.77-2.92). With grain size increasing to 620±300 nm, the refractive index shows a value between 2.39 and 2.47, approaching to that of natural diamond (2.37-2.55), and a lower extinction coefficient value between 0.08 and 0.77. When the grain size increases to 2200 nm, the value of refractive index increases to a value between 2.66 and 2.81, and the extinction coefficient increases to a value in a range of 0.22-1.28. Visible Raman spectroscopy measurements show that all samples have distinct diamond peaks located in a range of 1331 cm-1-1333 cm-1, the content of diamond phase increases gradually as grain size increases, and the amount of trans-polyacetylene (TPA) content decreases. Meanwhile, the sp2 carbon clusters content and its full-width-at-half-maximum (FWHM) value are significantly reduced in MCD film with a grain size of 620 nm, which is beneficial to the improvement of the optical properties of the films.
|
Received: 02 September 2019
Revised: 22 October 2019
Accepted manuscript online:
|
PACS:
|
81.15.Gh
|
(Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))
|
|
82.45.Mp
|
(Thin layers, films, monolayers, membranes)
|
|
82.75.Mj
|
(Measurements and simulation of properties (optical, structural) of molecules in zeolites)
|
|
Fund: Project supported by the Key Project of the National Natural Science Foundation of China (Grant No. U1809210), the National Natural Science Foundation of China (Grant Nos. 50972129 and 50602039), the International Science Technology Cooperation Program of China (Grant No. 2014DFR51160), the National Key Research and Development Program of China (Grant No. 2016YFE0133200), the European Union's Horizon 2020 Research and Innovation Staff Exchange (RISE) Scheme (Grant No. 734578), the Belt and Road International Cooperation Project from Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021), and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LQ15A040004 and LY18E020013). |
Corresponding Authors:
Xiao-Jun Hu
E-mail: huxj@zjut.edu.cn
|
Cite this article:
Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君) Influences of grain size and microstructure on optical properties of microcrystalline diamond films 2020 Chin. Phys. B 29 018103
|
[1] |
Checoury X, Neel D, Boucaud P, Gesset C, Girard H, Saada S and Bergonzo P 2012 Appl. Phys. Lett. 101 171115
|
[2] |
Hoi B D, Yarmohammadi M and Kazzaz H A 2017 J. Magn. Magn. Mater. 439 203
|
[3] |
Mei Y S, Fan D, Lu S H, Shen Y G and Hu X J 2016 J. Appl. Phys. 120 225107
|
[4] |
Chen Y, Lee C, Lu L, Liu D, Wu Y K, Feng L T, Li M, Rockstuhl C, Guo G P, Guo G C, Tame M and Ren X F 2018 Optica 5 1229
|
[5] |
Piron P, Catalan E V, Haas J, Osterlund L, Nikolajeff F, Andersson P O, Bergstrom M J, Mizaikoff B and Karlsson M 2018 Photonic Instrumentation Engineering V, eds. Soskind Y G and Olson C (Bellingham: Spie-Int Soc Optical Engineering)
|
[6] |
Wrachtrup J and Jelezko F 2006 J. Phys.-Condes. Matter 18 S807
|
[7] |
Gao F, Van Erps J, Huang Z H, Thienpont H, Beausoleil R G and Vermeulen N 2018 IEEE J. Sel. Top. Quantum Electron. 24 6100909
|
[8] |
Struk P 2019 Materials 12 175
|
[9] |
Qi Y P, Zhang X W, Zhou P Y, Hu B B and Wang X X 2018 Acta Phys. Sin. 67 197301 (in Chinese)
|
[10] |
Doronin M A, Polyakov S N, Kravchuk K S, Molchanov S P, Lomov A A, Troschiev S Y and Terentiev S A 2018 Diam. Rel. Mater. 87 149
|
[11] |
Remes Z, Babchenko O, Varga M, Stuchlik J, Jirasek V, Prajzler V, Nekvindova P and Kromka A 2016 Thin Solid Films 618 130
|
[12] |
Sobaszek M, Skowronski L, Bogdanowicz R, Siuzdak K, Cirocka A, Zieba P, Gnyba M, Naparty M, Golunski L and Plotka P 2015 Opt. Mater. 42 24
|
[13] |
Ajikumar P K, Ganesan K, Kumar N, Ravindran T R, Kalavathi S and Kamruddin M 2019 Appl. Surf. Sci. 469 10
|
[14] |
Rath P, Kahl O, Ferrari S, Sproll F, Lewes-Malandrakis G, Brink D, Ilin K, Siegel M, Nebel C and Pernice W 2015 Light: Sci. & Appl. 4 e338
|
[15] |
Malmstrom M, Karlsson M, Forsberg P, Cai Y X, Nikolajeff F and Laurell F 2016 Opt. Mater. Express 6 1286
|
[16] |
Wang X F, Karlsson M, Forsberg P, Sieger M, Nikolajeff F, Osterlund L and Mizaikoff B 2014 Anal. Chem. 86 8136
|
[17] |
Raja Shekar P V, Madhavi Latha D and Pisipati V G K M 2017 Opt. Mater. 64 564
|
[18] |
Delfaure C, Tranchant N, Mazellier J P, Ponard P and Saada S 2016 Diam. Rel. Mater. 69 214
|
[19] |
Mistrik J, Janicek P, Taylor A, Fendrych F, Fekete L, Jager A and Nesladek M 2014 Thin Solid Films 571 230
|
[20] |
Ficek M, Sobaszek M, Gnyba M, Ryl J, Goluński Ł, Smietana M, Jasiński J, Caban P and Bogdanowicz R 2016 Appl. Surf. Sci. 387 846
|
[21] |
Bogdanowicz R, Sobaszek M, Sawczak M, Grigorian G M, Ficek M, Caban P, Herman A and Cenian A 2019 Diam. Rel. Mater. 96 198
|
[22] |
Khomich A V, Kovalev V I, Zavedeev E V, Khmelnitskiy R A and Gippius A A 2005 Vacuum 78 583
|
[23] |
Hilfiker J N, Pribil G K, Synowicki R, Martin A C and Hale J S 2019 Surf. Coat. Technol. 357 114
|
[24] |
Abdel-Wahab F, Ashraf I M and Montaser A A 2019 Optik 178 813
|
[25] |
Zhu J, Han J, Han X, Meng S, Liu A and He X 2006 Opt. Mater. 28 473
|
[26] |
Aghgonbad M M and Sedghi H 2018 Chin. J. Phys. 56 2129
|
[27] |
Kuntumalla M K, Elfimchev S, Chandran M and Hoffman A 2018 Thin Solid Films 653 284
|
[28] |
Huang K, Hu X, Xu H, Shen Y and Khomich A 2014 Appl. Surf. Sci. 317 11
|
[29] |
Haubner R and Rudigier M 2013 Phys. Procedia 46 71
|
[30] |
Xu H, Chen C, Fan D, Jiang M, Li X and Hu X 2019 Carbon 145 187
|
[31] |
Sails S R, Gardiner D J, Bowden M, Savage J and Rodway D 1996 Diam. Rel. Mater. 5 589
|
[32] |
Fan L S, Constantin L, Li D W, Liu L, Keramatnejad K, Azina C, Huang X, Golgir H R, Lu Y, Ahmadi Z, Wang F, Shield J, Cui B, Silvain J F and Lu Y F 2018 Light-Sci. Appl. 7 17177
|
[33] |
Xu H, Liu J J, Ye H T, Coathup D J, Khomich A V and Hu X J 2018 Chin. Phys. B 27 096104
|
[34] |
Gu S S and Hu X J 2013 J. Appl. Phys. 114 023506
|
[35] |
Ferrari A C and Basko D M 2013 Nat. Nanotechnol. 8 235
|
[36] |
Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|