Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(1): 018103    DOI: 10.1088/1674-1056/ab593d
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influences of grain size and microstructure on optical properties of microcrystalline diamond films

Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君)
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
Abstract  Microcrystalline diamond (MCD) films with different grain sizes ranging from 160 nm to 2200 nm are prepared by using a hot filament chemical vapor deposition (HFCVD) system, and the influences of grain size and structural features on optical properties are investigated. The results show that the film with grain size in a range of 160 nm-310 nm exhibits a higher refractive index in a range of (2.77-2.92). With grain size increasing to 620±300 nm, the refractive index shows a value between 2.39 and 2.47, approaching to that of natural diamond (2.37-2.55), and a lower extinction coefficient value between 0.08 and 0.77. When the grain size increases to 2200 nm, the value of refractive index increases to a value between 2.66 and 2.81, and the extinction coefficient increases to a value in a range of 0.22-1.28. Visible Raman spectroscopy measurements show that all samples have distinct diamond peaks located in a range of 1331 cm-1-1333 cm-1, the content of diamond phase increases gradually as grain size increases, and the amount of trans-polyacetylene (TPA) content decreases. Meanwhile, the sp2 carbon clusters content and its full-width-at-half-maximum (FWHM) value are significantly reduced in MCD film with a grain size of 620 nm, which is beneficial to the improvement of the optical properties of the films.
Keywords:  microcrystalline diamond films      grain size      microstructure      optical properties  
Received:  02 September 2019      Revised:  22 October 2019      Accepted manuscript online: 
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  82.45.Mp (Thin layers, films, monolayers, membranes)  
  82.75.Mj (Measurements and simulation of properties (optical, structural) of molecules in zeolites)  
Fund: Project supported by the Key Project of the National Natural Science Foundation of China (Grant No. U1809210), the National Natural Science Foundation of China (Grant Nos. 50972129 and 50602039), the International Science Technology Cooperation Program of China (Grant No. 2014DFR51160), the National Key Research and Development Program of China (Grant No. 2016YFE0133200), the European Union's Horizon 2020 Research and Innovation Staff Exchange (RISE) Scheme (Grant No. 734578), the Belt and Road International Cooperation Project from Key Research and Development Program of Zhejiang Province, China (Grant No. 2018C04021), and the Natural Science Foundation of Zhejiang Province, China (Grant Nos. LQ15A040004 and LY18E020013).
Corresponding Authors:  Xiao-Jun Hu     E-mail:  huxj@zjut.edu.cn

Cite this article: 

Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君) Influences of grain size and microstructure on optical properties of microcrystalline diamond films 2020 Chin. Phys. B 29 018103

[1] Checoury X, Neel D, Boucaud P, Gesset C, Girard H, Saada S and Bergonzo P 2012 Appl. Phys. Lett. 101 171115
[2] Hoi B D, Yarmohammadi M and Kazzaz H A 2017 J. Magn. Magn. Mater. 439 203
[3] Mei Y S, Fan D, Lu S H, Shen Y G and Hu X J 2016 J. Appl. Phys. 120 225107
[4] Chen Y, Lee C, Lu L, Liu D, Wu Y K, Feng L T, Li M, Rockstuhl C, Guo G P, Guo G C, Tame M and Ren X F 2018 Optica 5 1229
[5] Piron P, Catalan E V, Haas J, Osterlund L, Nikolajeff F, Andersson P O, Bergstrom M J, Mizaikoff B and Karlsson M 2018 Photonic Instrumentation Engineering V, eds. Soskind Y G and Olson C (Bellingham: Spie-Int Soc Optical Engineering)
[6] Wrachtrup J and Jelezko F 2006 J. Phys.-Condes. Matter 18 S807
[7] Gao F, Van Erps J, Huang Z H, Thienpont H, Beausoleil R G and Vermeulen N 2018 IEEE J. Sel. Top. Quantum Electron. 24 6100909
[8] Struk P 2019 Materials 12 175
[9] Qi Y P, Zhang X W, Zhou P Y, Hu B B and Wang X X 2018 Acta Phys. Sin. 67 197301 (in Chinese)
[10] Doronin M A, Polyakov S N, Kravchuk K S, Molchanov S P, Lomov A A, Troschiev S Y and Terentiev S A 2018 Diam. Rel. Mater. 87 149
[11] Remes Z, Babchenko O, Varga M, Stuchlik J, Jirasek V, Prajzler V, Nekvindova P and Kromka A 2016 Thin Solid Films 618 130
[12] Sobaszek M, Skowronski L, Bogdanowicz R, Siuzdak K, Cirocka A, Zieba P, Gnyba M, Naparty M, Golunski L and Plotka P 2015 Opt. Mater. 42 24
[13] Ajikumar P K, Ganesan K, Kumar N, Ravindran T R, Kalavathi S and Kamruddin M 2019 Appl. Surf. Sci. 469 10
[14] Rath P, Kahl O, Ferrari S, Sproll F, Lewes-Malandrakis G, Brink D, Ilin K, Siegel M, Nebel C and Pernice W 2015 Light: Sci. & Appl. 4 e338
[15] Malmstrom M, Karlsson M, Forsberg P, Cai Y X, Nikolajeff F and Laurell F 2016 Opt. Mater. Express 6 1286
[16] Wang X F, Karlsson M, Forsberg P, Sieger M, Nikolajeff F, Osterlund L and Mizaikoff B 2014 Anal. Chem. 86 8136
[17] Raja Shekar P V, Madhavi Latha D and Pisipati V G K M 2017 Opt. Mater. 64 564
[18] Delfaure C, Tranchant N, Mazellier J P, Ponard P and Saada S 2016 Diam. Rel. Mater. 69 214
[19] Mistrik J, Janicek P, Taylor A, Fendrych F, Fekete L, Jager A and Nesladek M 2014 Thin Solid Films 571 230
[20] Ficek M, Sobaszek M, Gnyba M, Ryl J, Goluński Ł, Smietana M, Jasiński J, Caban P and Bogdanowicz R 2016 Appl. Surf. Sci. 387 846
[21] Bogdanowicz R, Sobaszek M, Sawczak M, Grigorian G M, Ficek M, Caban P, Herman A and Cenian A 2019 Diam. Rel. Mater. 96 198
[22] Khomich A V, Kovalev V I, Zavedeev E V, Khmelnitskiy R A and Gippius A A 2005 Vacuum 78 583
[23] Hilfiker J N, Pribil G K, Synowicki R, Martin A C and Hale J S 2019 Surf. Coat. Technol. 357 114
[24] Abdel-Wahab F, Ashraf I M and Montaser A A 2019 Optik 178 813
[25] Zhu J, Han J, Han X, Meng S, Liu A and He X 2006 Opt. Mater. 28 473
[26] Aghgonbad M M and Sedghi H 2018 Chin. J. Phys. 56 2129
[27] Kuntumalla M K, Elfimchev S, Chandran M and Hoffman A 2018 Thin Solid Films 653 284
[28] Huang K, Hu X, Xu H, Shen Y and Khomich A 2014 Appl. Surf. Sci. 317 11
[29] Haubner R and Rudigier M 2013 Phys. Procedia 46 71
[30] Xu H, Chen C, Fan D, Jiang M, Li X and Hu X 2019 Carbon 145 187
[31] Sails S R, Gardiner D J, Bowden M, Savage J and Rodway D 1996 Diam. Rel. Mater. 5 589
[32] Fan L S, Constantin L, Li D W, Liu L, Keramatnejad K, Azina C, Huang X, Golgir H R, Lu Y, Ahmadi Z, Wang F, Shield J, Cui B, Silvain J F and Lu Y F 2018 Light-Sci. Appl. 7 17177
[33] Xu H, Liu J J, Ye H T, Coathup D J, Khomich A V and Hu X J 2018 Chin. Phys. B 27 096104
[34] Gu S S and Hu X J 2013 J. Appl. Phys. 114 023506
[35] Ferrari A C and Basko D M 2013 Nat. Nanotechnol. 8 235
[36] Ferrari A C and Robertson J 2000 Phys. Rev. B 61 14095
[1] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[7] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[8] Nonlinear optical properties in n-type quadruple δ-doped GaAs quantum wells
Humberto Noverola-Gamas, Luis Manuel Gaggero-Sager, and Outmane Oubram. Chin. Phys. B, 2022, 31(4): 044203.
[9] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[10] First-principles study of structural and opto-electronic characteristics of ultra-thin amorphous carbon films
Xiao-Yan Liu(刘晓艳), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(1): 016102.
[11] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[12] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[13] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[14] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[15] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
No Suggested Reading articles found!