Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(12): 128201    DOI: 10.1088/1674-1056/abad1f
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling

Yu-Hao Song(宋宇豪)1, Ming-Tao Wang(王明涛)1,2,3,†, Jia Ni(倪佳)1, Jian-Feng Jin(金剑锋)1,2, and Ya-Ping Zong(宗亚平)1
1 School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China; 2 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China; 3 Research Centre for Metallic Wires, Northeastern University, Shenyang 110819, China
Abstract  A three-dimensional (3D) multiple phase field model, which takes into account the grain boundary (GB) energy anisotropy caused by texture, is established based on real grain orientations and Read-Shockley model. The model is applied to the grain growth process of polycrystalline Mg (ZK60) alloy to investigate the evolution characteristics in different systems with varying proportions of low-angle grain boundary (LAGB) caused by different texture levels. It is found that the GB energy anisotropy can cause the grain growth kinetics to change, namely, higher texture levels (also means higher LAGB proportion) result in lower kinetics, and vice versa. The simulation results also show that the topological characteristics, such as LAGB proportion and distribution of grain size, undergo different evolution characteristics in different systems, and a more serious grain size fluctuation can be caused by a higher texture level. The mechanism is mainly the slower evolution of textured grains in their accumulation area and the faster coarsening rate of non-textured grains. Therefore, weakening the texture level is an effective way for implementing a desired homogenized microstructure in ZK60 Mg alloy. The rules revealed by the simulation results should be of great significance for revealing how the GB anisotropy affects the evolution of polycrystalline during the grain growth after recrystallization and offer the ideas for processing the alloy and optimizing the microstructure.
Keywords:  phase-field model      grain boundary (GB) energy anisotropy      grain size fluctuation      ZK60 alloy  
Received:  21 May 2020      Revised:  01 July 2020      Accepted manuscript online:  07 August 2020
PACS:  82.20.Wt (Computational modeling; simulation)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  91.60.Ed (Crystal structure and defects, microstructure)  
  68.55.jm (Texture)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0701204), the 111 Project, China (Grant No. B20029), the Fundamental Research Funds for the Central Universities, China (Grant Nos. N2002017 and N2007011), the National Natural Science Foundation of China (Grant No. 51571055), and the Science Fund from the Science and Technology Bureau of Jiangyin High-Tech Industrial Development Zone, China (Grant No. ZX20200062).
Corresponding Authors:  Corresponding author. E-mail: wangmingtao@mail.neu.edu.cn   

Cite this article: 

Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平) Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling 2020 Chin. Phys. B 29 128201

[1] Lin J, Wang Q, Peng L and Roven H J J. Alloys Compd. 476 441 DOI: 10.1016/j.jallcom.2008.09.0312009
[2] Hadadzadeh A, Wells M A, Shaha S K, Jahed H and Williams B W J. Alloys Compd. 702 274 DOI: 10.1016/j.jallcom.2017.01.2362017
[3] Wang W, Cui G, Zhang W, Chen W and Wang E Mater. Sci. Eng. A 724 486 DOI: 10.1016/j.msea.2018.03.0962018
[4] Wang W, Ma L, Chai S, Zhang W, Chen W, Feng Y and Cui G Mater. Sci. Eng. A 730 162 DOI: 10.1016/j.msea.2018.05.1132018
[5] Bhattacharyya J J, Agnew S R and Muralidharan G Acta Mater. 86 80 DOI: 10.1016/j.actamat.2014.12.0092015
[6] Pèrez-Prado M T and Ruano O A Scr. Mater. 48 59 DOI: 10.1016/S1359-6462(02)00346-92003
[7] Jamshidian M, Thamburaja P and Rabczuk T J. Comput. Phys. 327 779 DOI: 10.1016/j.jcp.2016.09.0612016
[8] Zhang T, Lu S H, Zhang J B, Li Z F, Chen P, Gong H and Wu Y X Modell. Simul. Mater. Sci. 25 065005 DOI: 10.1088/1361-651X/aa71212017
[9] Tan Y, Maniatty A M, Zheng C and Wen J T Modell. Simul. Mater. Sci. 25 065003 DOI: 10.1088/1361-651X/aa73272017
[10] Huo L, Han Z and Liu B2009 Acta Metall. Sin. 45 1414
[11] He R, Wang M, Jin J and Zong Y Chin. Phys. B 26 128201 DOI: 10.1088/1674-1056/26/12/1282012017
[12] Han G, Han Z, Luo A A and Liu B Metall. Mater. Trans. A 46 948 DOI: 10.1007/s11661-014-2674-62014
[13] Han G, Han Z, Luo A A, Sachdev A K and Liu B Scripta Mater. 68 691 DOI: 10.1016/j.scriptamat.2013.01.0182013
[14] Zhang J, Teng C, Yang M, Xu D, Wang Y and Yang R2013 Chin. J. Nonferrous Met. 23 296
[15] Zhang J, Xu D, Wang Y and Yang R2016 Acta Metall. Sin. 52 905
[16] Han Z, Zhu W and Liu B2009 Acta Metall. Sin. 45 356
[17] Lewis R W, Han Z Q and Gethin D T C. R. Mec. 335 287 DOI: 10.1016/j.crme.2007.05.0162007
[18] Moelans N, Blanpain B and Wollants P Acta Mater. 54 1175 DOI: 10.1016/j.actamat.2005.10.0452006
[19] Rehn V, H?tzer J, Rheinheimer W, Seiz M, Serr C and Nestler B Acta Mater. 174 439 DOI: 10.1016/j.actamat.2019.05.0592019
[20] Vedantam S and Patnaik B S Phys. Rev. E 73 016703 DOI: 10.1103/PhysRevE.73.0167032006
[21] Kim D U, Cha P R, Kim S G, Kim W T, Cho J, Han H N, Lee H J and Kim J Comput. Mater. Sci. 56 58 DOI: 10.1016/j.commatsci.2011.12.0362012
[22] Bhattacharyya S, Heo T W, Chang K and Chen L Q Modell. Simul. Mater. Sci. Eng. 19 035002 DOI: 10.1088/0965-0393/19/3/0350022011
[23] Shahnooshi E, Jamshidian M, Jafari M, Ziaei-Rad S and Rabczuk T J. Cryst. Growth 518 18 DOI: 10.1016/j.jcrysgro.2019.04.0152019
[24] Suwa Y and Saito Y Mater. Trans. 46 1208 DOI: 10.2320/matertrans.46.12082005
[25] Abrivard G, Busso E P, Forest S and Appolaire B Philos. Mag. 92 3643 DOI: 10.1080/14786435.2012.7177262012
[26] Asle Zaeem M, El Kadiri H, Wang P T and Horstemeyer M F Comput. Mater. Sci. 50 2488 DOI: 10.1016/j.commatsci.2011.03.0312011
[27] Mallick A and Vedantam S Comput. Mater. Sci. 46 21 DOI: 10.1016/j.commatsci.2009.01.0262009
[28] Miyoshi E and Takaki T Comput. Mater. Sci. 120 77 DOI: 10.1016/j.commatsci.2016.04.0142016
[29] Steinbach I, Pezzolla F, Nestler B, SeeBelberg M, Prieler R, Schmitz G J and Rezende J L L Physica D 94 135 DOI: 10.1016/0167-2789(95)00298-71996
[30] Steinbach I and Pezzolla F Physica D 134 385 DOI: 10.1016/S0167-2789(99)00129-31999
[31] Miyoshi E and Takaki T J. Cryst. Growth 474 160 DOI: 10.1016/j.jcrysgro.2016.11.0972017
[32] Vuppuluri A and Vedantam S J. Mater. Sci. 54 506 DOI: 10.1007/s10853-018-2857-42018
[33] McKenna I M, Gururajan M P and Voorhees P W J. Mater. Sci. 44 2206 DOI: 10.1007/s10853-008-3196-72009
[34] Suwa Y, Saito Y and Onodera H Comput. Mater. Sci. 40 40 DOI: 10.1016/j.commatsci.2006.10.0252007
[35] III C E K and Chen L Q2002 Acta Mater. 50 3057
[36] Chang K, Chen L Q, Krill C E and Moelans N Comput. Mater. Sci. 127 67 DOI: 10.1016/j.commatsci.2016.10.0272017
[37] Kim H K, Kim S G, Dong W, Steinbach I and Lee B J Modell. Simul. Mater. Sci. Eng. 22 034004 DOI: 10.1088/0965-0393/22/3/0340042014
[38] Song Y, Wang M, Zong Y, He R and Jin J Materials 11 1903 DOI: 10.3390/ma111019032018
[39] Chen L Q Ann. Rev. Mater. Res. 32 113 DOI: 10.1146/annurev.matsci.32.112001.1320412002
[40] Moelans N., Blanpain B.and Wollants P.Phys. Rev. B. 78 024113 DOI: 10.1103/PhysRevB.78.0241132008
[41] Cahn J W Acta Mater. 9 795 DOI: 10.1016/0001-6160(61)90182-11961
[42] Mao W and Zhang X1993 Quantitative Texture Analysis of Crystal Materials (BeiJing: Metallurgical Industry Press) p. 235
[43] Zhang X, Zong Y, Wang M and Wu Y2011 Acta Phys. Sin. 60 068201 (in Chinese)
[44] Warren J A, Kobayashi R and Carter W C J. Cryst. Growth 211 18 DOI: 10.1016/S0022-0248(99)00856-82000
[45] Darvishi Kamachali R and Steinbach I Acta Mater. 60 2719 DOI: 10.1016/j.actamat.2012.01.0372012
[46] Burkeand J E and Turnbull D Prog. Metal Phys. 3 220 DOI: 10.1016/0502-8205(52)90009-91952
[47] Song B, Xin R, Guo N, Xu J, Sun L and Liu Q Mater. Sci. Eng. A 639 724 DOI: 10.1016/j.msea.2015.05.0882015
[48] Liu G1989 Phys. Exam. Test. 03 26
[50] Park S H, Kim S H, Kim Y M and You B S J. Alloys Compd. 646 932 DOI: 10.1016/j.jallcom.2015.06.0342015
[1] Phase-field modeling of faceted growth in solidification of alloys
Hui Xing(邢辉), Qi An(安琪), Xianglei Dong(董祥雷), and Yongsheng Han(韩永生). Chin. Phys. B, 2022, 31(4): 048104.
[2] Phase-field simulation of dendritic growth in a binary alloy with thermodynamics data
Long Wen-Yuan(龙文元), Xia Chun(夏春), Xiong Bo-Wen(熊博文), and Fang Li-Gao(方立高) . Chin. Phys. B, 2008, 17(3): 1078-1083.
No Suggested Reading articles found!