| CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
A semiconductor-like in-plane junction between overdoped and optimally doped La2-xCexCuO4 |
| Mohsin Rafique(莫辛 拉菲克)1, Rui Wu(吴蕊)1,†, Zefeng Lin(林泽丰)2,3, Kui Jin(金魁)2,3, Qi-Kun Xue(薛其坤)1,4,5,6, and Ding Zhang(张定)1,4,5,7,8 |
1 Beijing Academy of Quantum Information Sciences, Beijing 100193, China; 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; 3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 4 State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China; 5 Frontier Science Center for Quantum Information, Beijing 100084, China; 6 Southern University of Science and Technology, Shenzhen 518055, China; 7 RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan; 8 Hefei National Laboratory, Hefei 230028, China |
|
|
|
|
Abstract The electron-doped cuprate superconductor exhibits a unique electronic structure, where both electron and hole Fermi surface (FS) pockets coexist in the optimally doped (OP) region, while in the overdoped (OD) region there exists only a large hole FS pocket. It is therefore an intriguing question whether or not a p-n junction arises if the OD electron-doped cuprate interfaces with the OP compound. Here, we construct such an in-plane junction by selectively modulating the doping levels in thin films of ${\mathrm{La}}_{2-x}{\mathrm{Ce}}_{x}\mathrm{Cu}\mathrm{O}_{\mathrm{4}}$ (LCCO) — a typical electron-doped cuprate. We find that the junction exhibits non-linear, asymmetric $I$-$V$ characteristics, which are consistent with those of a p-n semiconductor junction, across a wide temperature range from 250 K to 10 K, regardless of the Hall coefficient sign change or the superconducting transition. We attribute these features to a potential barrier formed at the junction, which is set by the band bending in both OD and OP LCCO.
|
Received: 11 March 2025
Revised: 30 April 2025
Accepted manuscript online: 19 May 2025
|
|
PACS:
|
74.25.F-
|
(Transport properties)
|
| |
74.72.Ek
|
(Electron-doped)
|
| |
73.40.-c
|
(Electronic transport in interface structures)
|
|
| Fund: The authors thank valuable discussion with Shusen Ye and Yang Feng. Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1403100), the National Natural Science Foundation of China (Grant Nos. 52388201, 12361141820, and 12274249), and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302400). |
Corresponding Authors:
Rui Wu
E-mail: wu_rui@baqis.ac.cn
|
Cite this article:
Mohsin Rafique(莫辛 拉菲克), Rui Wu(吴蕊), Zefeng Lin(林泽丰), Kui Jin(金魁), Qi-Kun Xue(薛其坤), and Ding Zhang(张定) A semiconductor-like in-plane junction between overdoped and optimally doped La2-xCexCuO4 2025 Chin. Phys. B 34 097404
|
[1] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179 [2] Zhou X, Lee W S, Imada M, Trivedi N, Phillips P, Kee H Y, Törmä P and Eremets M 2021 Nat. Rev. Phys. 3 462 [3] Yazdani A, da Silva Neto E H and Aynajian P 2016 Annu. Rev. Condens. Matter Phys. 7 11 [4] Proust C and Taillefer L 2019 Annu. Rev. Condens. Matter Phys. 10 409 [5] Fan J Q, Yu X Q, Cheng F J, Wang H, Wang R, Ma X, Hu X P, Zhang D, Ma X C, Xue Q K and Song C L 2022 Natl. Sci. Rev. 9 nwab225 [6] Hu S, Qiao H, Gu G, Xue Q K and Zhang D 2024 Nat. Commun. 15 4818 [7] Jiang K and Hu J 2022 Nat. Phys. 18 1145 [8] Zhu Y, Wang H, Wang Z, Hu S, Gu G, Zhu J, Zhang D and Xue Q K 2023 Phys. Rev. B 108 174508 [9] Ghosh S, Patil V, Basu A, Kuldeep, Dutta A, Jangade D A, Kulkarni R, Thamizhavel A, Steiner J F, von Oppen F and Deshmukh M M 2024 Nat. Mater. 23 612 [10] Zhao S Y F, Cui X, Volkov P A, Yoo H, Lee S, Gardener J A, Akey A J, Engelke R, Ronen Y, Zhong R, Gu G, Plugge S, Tummuru T, Kim M, Franz M, Pixley J H, Poccia N and Kim P 2023 Science 382 1422 [11] Ando F, Miyasaka Y, Li T, Ishizuka J, Arakawa T, Shiota Y, Moriyama T, Yanase Y and Ono T 2020 Nature 584 373 [12] Qi S, Ge J, Ji C, Ai Y, Ma G, Wang Z, Cui Z, Liu Y, Wang Z and Wang J 2025 Nat. Commun. 16 531 [13] Armitage N P, Fournier P and Greene R L 2010 Rev. Mod. Phys. 82 2421 [14] Matsui H, Takahashi T, Sato T, Terashima K, Ding H, Uefuji T and Yamada K 2007 Phys. Rev. B 75 224514 [15] Jiang W, Mao S N, Xi X X, Jiang X, Peng J L, Venkatesan T, Lobb C J and Greene R L 1994 Phys. Rev. Lett. 73 1291 [16] Armitage N P, Ronning F, Lu D H, Kim C, Damascelli A, Shen K M, Feng D L, Eisaki H, Shen Z X, Mang P K, Kaneko N, Greven M, Onose Y, Taguchi Y and Tokura Y 2002 Phys. Rev. Lett. 88 257001 [17] Dagan Y, QazilbashMM, Hill C P, Kulkarni V N and Greene R L 2004 Phys. Rev. Lett. 92 167001 [18] Li P, Balakirev F F and Greene R L 2007 Phys. Rev. Lett. 99 047003 [19] Jin K, Hu W, Zhu B, Kim D, Yuan J, Sun Y, Xiang T, Fuhrer M S, Takeuchi I and Greene R L 2016 Sci. Rep. 6 26642 [20] Jin K, Zhu B Y, Yuan J, Wu H, Zhao L, Wu B X, Han Y, Xu B, Cao L X, Qiu X G and Zhao B R 2007 Phys. Rev. B 75 214501 [21] Jin K, Zhu B Y, Wu B X, Gao L J and Zhao B R 2008 Phys. Rev. B 78 174521 [22] Rafique M, Feng Z, Lin Z, Wei X, Liao M, Zhang D, Jin K and Xue Q K 2019 Nano Lett. 19 7775 [23] Zhang D, Ishizuka H, Lu N, Wang Y, Nagaosa N, Yu P and Xue Q K 2018 Phys. Rev. B 97 184433 [24] Matsuoka H, Nakano M, Uchida M, Kawasaki M and Iwasa Y 2018 Phys. Rev. B 98 144506 [25] Jiang X, Qin M, Wei X, Xu L, Ke J, Zhu H, Zhang R, Zhao Z, Liang Q, Wei Z, Lin Z, Feng Z, Chen F, Xiong P, Yuan J, Zhu B, Li Y, Xi C, Wang Z, Yang M, Wang J, Xiang T, Hu J, Jiang K, Chen Q, Jin K and Zhao Z 2023 Nat. Phys. 19 365 [26] Sarkar T, Mandal P R, Higgins J S, Zhao Y, Yu H, Jin K and Greene R L 2017 Phys. Rev. B 96 155449 [27] Jin K, Butch N P, Kirshenbaum K, Paglione J and Greene R L 2011 Nature 476 73 [28] Yuan J, Chen Q, Jiang K, Feng Z, Lin Z, Yu H, He G, Zhang J, Jiang X, Zhang X, Shi Y, Zhang Y, Qin M, Cheng Z G, Tamura N, Yang Y F, Xiang T, Hu J, Takeuchi I, Jin K and Zhao Z 2022 Nature 602 431 [29] Kusko C, Markiewicz R S, Lindroos M and Bansil A 2002 Phys. Rev. B 66 140513 [30] Moritz B, Schmitt F, Meevasana W, Johnston S, Motoyama E M, Greven M, Lu D H, Kim C, Scalettar R T, Shen Z X and Devereaux T P 2009 New J. Phys. 11 093020 [31] Tanmoy Das, Markiewicz R S and Bansil A 2010 Phys. Rev. B 81 184515 [32] CédricWeber, Kristjan Haule and Gabriel Kotliar 2010 Phys. Rev. B 82 125107 [33] Harima N, Matsuno J and Fujimori A 2001 Phys. Rev. B 64 220507 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|