Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 097403    DOI: 10.1088/1674-1056/add4fc
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Large grain size obtained by substrate directly heating for YBCO epitaxial films

Kebin Li(李珂彬), Yifei Zhang(张一飞), Tong Zhang(张同), Shuguang Yi(易曙光), Shi-Peng Zhang(张世鹏), Quan-Ming Gao(高全明), and Shan-Dong Li(李山东)†
Shandong Key Laboratory of Advanced Packaging, System Integration and Applications, College of Electronics and Information, Qingdao University, Qingdao 266071, China
Abstract  It is very important for high temperature superconducting electronic devices to increase the grain size of YBCO epitaxial films because it can effectively reduce the defects and improve the probability of successful preparation of Josephson junction. In this study, YBa$_{2}$Cu$_{3}$O$_{7-\delta }$ (YBCO) films with grain size in excess of 1.5 μm were successfully prepared by the directly heating SrTiO$_3$ substrates coated by SiC on their back. Interestingly, the grain size of YBCO film is enhanced greatly by this directly heating method, and the critical temperature $T_{\rm C}$ and critical current density $J_{\rm C}$ of YBCO films are as high as 91.5 K and 3.5 MA/cm$^{2}$, respectively. Compared with the traditional indirect heating method, which involves applying silver paste and then using a heat soaking block ($e.g.$ Inconel 600), this direct heating method effectively enhances the grain size of YBCO film and the possibility of successful preparation of Josephson junction.
Keywords:  YBCO film      grain size      critical temperature      critical current density  
Received:  28 February 2025      Revised:  22 April 2025      Accepted manuscript online:  07 May 2025
PACS:  74.25.-q (Properties of superconductors)  
  74.25.Sv (Critical currents)  
  74.78.-w (Superconducting films and low-dimensional structures)  
  81.15.Fg (Pulsed laser ablation deposition)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2023YFF0720500), the State Key Program of the National Natural Science Foundation of China (Grant No. U22A2019), and the National Key Project (Grant No. 22-05-CXZX-04-03-15).
Corresponding Authors:  Shan-Dong Li     E-mail:  dylsd007@163.com

Cite this article: 

Kebin Li(李珂彬), Yifei Zhang(张一飞), Tong Zhang(张同), Shuguang Yi(易曙光), Shi-Peng Zhang(张世鹏), Quan-Ming Gao(高全明), and Shan-Dong Li(李山东) Large grain size obtained by substrate directly heating for YBCO epitaxial films 2025 Chin. Phys. B 34 097403

[1] Tolpygo S K, Bolkhovsky V, Weir T J, Wynn A, Oates D E, Johnson L M and Gouker M A 2016 IEEE Transactions on Applied Superconductivity 26 1
[2] Yang H C, Wu T Y, Horng H E, Wu C C, Yang S Y, Liao S H, Wu C H, Jeng J T, Chen J C, Chen K L and Chen M J 2006 Superconductor Science and Technology 19 S297
[3] Zhang X, Ying L, Niu M, Zhang H, Liu H, Wu Y, Xu W, Chen L, Shao Y, Liang T, Ma L, Jin H, Xie H, Gao Y, Sun H, Ren J, PengW, Maezawa M and Wang Z 2021 IEEE Transactions on Applied Superconductivity 31 1
[4] Schmelz M, Zakosarenko V, Chwala A, Schönau T, Stolz R, Anders S, Linzen S and Meyer H G 2016 IEEE Transactions on Applied Superconductivity 26 1
[5] Hato T, Tsukamoto A, Adachi S, Oshikubo Y, Watanabe H, Ishikawa H, Sugisaki M, Arai E and Tanabe K 2013 Superconductor Science and Technology 26 115003
[6] Song Z, Dai H, Rong L, Dong H, Wu J, Qiu L, Zhang G, Wang Y, Tao Q, Pei Y, Zhang S and Xie X 2019 IEEE Transactions on Applied Superconductivity 29 1
[7] Rong L, Bao S, Wu J, Zhang G, Qiu L, Zhang S, Wang Y, Dong H, Pei Y and Xie X 2019 IEEE Transactions on Applied Superconductivity 29 1
[8] Xue Z Y, Dong P, Yi Y M and Cao Z L 2007 Physica C 458 58
[9] Campbell D L, Shim Y P, Kannan B, Winik R, Kim D K, Melville A, Niedzielski B M, Yoder J L, Tahan C, Gustavsson S and Oliver W D 2020 Phys. Rev. X 10 041051
[10] Shirai S, Okubo Y, Matsuura K, Osada A, Nakamura Y and Noguchi A 2023 Phys. Rev. Lett. 130 260601
[11] Jaklevic R C, Lambe J, Silver A H and Mercereau J E 1964 Phys. Rev. Lett. 12 159
[12] Faley M I, Dammers J, Maslennikov Y V, Schneiderman J F, Winkler D, Koshelets V P, Shah N J and Dunin-Borkowski R E 2017 Superconductor Science and Technology 30 083001
[13] Xiong P Y, Chen F C, Feng Z P, Yang J T, Xia Y D, Yuan Y F, Wang X, Yuan J, Wu Y and Shi J 2023 Chin. Phys. B 32 077402
[14] Zhang Y F, Zhang S N, Liu J X, Yang F, Li C S, Li J F and Zhang P X 2024 Chin. Phys. Lett. 41 117402
[15] QueraltÓ A, Sieger M, Gupta K, Meledin A, Barusco P, Saltarelli L, de Palau M, Granados X, Obradors X and Puig T 2022 Superconductor Science and Technology 36 025003
[16] Mukaida M, Sato S, Takano Y, KusunokiMand Ohshima S 2002 Physica C 378-381 1232
[17] Cardwell D A 1998 Materials Science and Engineering: B 53 1
[18] Lee S G, Hong S H, Seong W K and Kang W N 2009 Superconductor Science and Technology 22 064009
[19] Zhang X, Miller D and Talvacchio J 1996 Journal of Materials Research 11 2440
[20] Lim J H, Jang S H, Joo J, Kim H, Lee H G, Hong G W and Kim C J 2006 Superconductor Science and Technology 19 306
[21] Aslan Ç ataltepe Ö, Güven Özdemir Z and Onbaşli Ü 2013 Physica C 491 59
[22] Snigirev O, Chukharkin M, Porokhov N, Rusanov S Y, Kashin V V, Tsvetkov V B, Kalabukhov A and Winkler D 2014 J. Phys.: Conf. Ser. 507 022033
[23] Nishioka T, Amemiya N, Jiang Z, Iijima Y, Saitoh T, Yamada M and Shiohara Y 2004 Physica C 412-414 992
[24] Lee J B, Lee S U, Kim S S, Kim B J, Kim H J, Yoo Y S, Kim J G, Hong G W and Lee H G 2009 Physica C 469 952
[25] Din F U, Shaari A H, Kien C S, Talib Z A, Din A U and Pah L K 2018 J. Phys.: Conf. Ser. 1082 012024
[26] Shipulin I A, Anna Thomas A, Holleis S, Eisterer M, Nielsch K and Hühne R 2022 Materials 15 5354
[27] Rasti M and Mohammadizadeh M R 2020 IEEE Transactions on Applied Superconductivity 30 1
[28] Shimizu Y, Takashima H, Yoshida Y and Furuse M 2018 IEEE Transactions on Applied Superconductivity 28 1
[29] Dai X H, Song J M, Zhao L, Wang Y L, Zhao H D and Liu B T 2020 Appl. Phys. A 126 895
[30] Arlina A, Halim S A, Kechik M M A and Chen S K 2015 J. Alloys Compd. 645 269
[31] Paturi P, Irjala M and Huhtinen H 2008 J. Appl. Phys. 103 123907
[32] Malisa A 2005 Annalen der Physik 517 533
[33] Gogova D, Tran D Q, Stanishev V, Jokubavicius V, Vines L, Schubert M, Yakimova R, Paskov P P and Darakchieva V 2024 J. Vac. Sci. Technol. A 42 022708
[34] Du J, Gnanarajan S and Bendavid A 2004 Physica C 400 143
[35] Ohshima S, Kusunoki M, Mukaida M, Suzuki T, Chibai K, Inadomaru M and Takano Y 2001 IEEE Transactions on Applied Superconductivity 11 3493
[36] Liu X, He Y, Li P, Li W, Wang Y and Zhou M 2024 Physica C 623 1354551
[37] Wu K H, Wang R C, Chen S P, Lin H C, Juang J Y, Uen T M and Gou Y S 1996 Appl. Phys. Lett. 69 421
[38] Miyazawa S, Sasaura M and Mukaida M 1993 Journal of Crystal Growth 128 704
[1] Fabrication and characterization of MgB2 spherical shells with reduced thickness on 1 mm diameter Si3N4 spheres
Ruining Sun(孙瑞宁), Tiequan Xu(徐铁权), Yue Wang(王越), Furen Wang(王福仁), and Zizhao Gan(甘子钊). Chin. Phys. B, 2025, 34(7): 077402.
[2] Microstructure and microwave surface resistance of YBCO films deposited under different oxygen pressures
Zhi-Bo Sheng(盛智博), Fu-Cong Chen(陈赋聪), Pei-Yu Xiong(熊沛雨), Qi-Ru Yi(易栖如), Jie Yuan(袁洁), Yu Chen(陈雨), Yue-Liang Gu(顾月良), Kui Jin(金魁), Huan-Hua Wang(王焕华), Xiao-Long Li(李晓龙), and Chen Gao(高琛). Chin. Phys. B, 2025, 34(4): 046105.
[3] Microstructure and magnetic properties of FeCoZr(Mo)BGe nanocrystalline alloys
Wanqiu Yu(于万秋), Yanxiang Sun(孙筵翔), Lihua Liu(刘立华), and Pingli Zhang(张平丽). Chin. Phys. B, 2025, 34(1): 016102.
[4] Quantitative analysis of laser-generated ultrasonic wave characteristics and their correlation with grain size in polycrystalline materials
Zhaowen Xu(徐兆文), Xue Bai(白雪), Jian Ma(马健), Zhuangzhuang Wan(万壮壮), and Chaoqun Wang(王超群). Chin. Phys. B, 2024, 33(8): 087801.
[5] Terahertz high-sensitivity SIS mixer based on Nb-AlN-NbN hybrid superconducting tunnel junctions
Bo-Liang Liu(刘博梁), Dong Liu(刘冬), Ming Yao(姚明), Jun-Da Jin(金骏达), Zheng Wang(王争), Jing Li(李婧), Sheng-Cai Shi(史生才), Artem Chekushkin, Michael Fominsky, Lyudmila Filippenko, and Valery Koshelets. Chin. Phys. B, 2024, 33(5): 058501.
[6] Effect of grain size on gas bubble evolution in nuclear fuel: Phase-field investigations
Dan Sun(孙丹), Qingfeng Yang(杨青峰), Jiajun Zhao(赵家珺), Shixin Gao(高士鑫), Yong Xin(辛勇), Yi Zhou(周毅), Chunyu Yin(尹春雨), Ping Chen(陈平), Jijun Zhao(赵纪军), and Yuanyuan Wang(王园园). Chin. Phys. B, 2024, 33(1): 016105.
[7] Optimization of large-area YBa2Cu3O7-δ thin films by pulsed laser deposition for planar microwave devices
Pei-Yu Xiong(熊沛雨), Fu-Cong Chen(陈赋聪), Zhong-Pei Feng(冯中沛), Jing-Ting Yang(杨景婷), Yu-Dong Xia(夏钰东), Yue-Feng Yuan(袁跃峰), Xu Wang(王旭), Jie Yuan(袁洁), Yun Wu(吴云), Jing Shi(石兢), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(7): 077402.
[8] In-plane current-induced magnetization reversal of Pd/CoZr/MgO magnetic multilayers
Jing Liu(刘婧), Caiyin You(游才印), Li Ma(马丽), Yun Li(李云), Ling Ma(马凌), and Na Tian(田娜). Chin. Phys. B, 2022, 31(12): 127502.
[9] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[10] Erratum to "Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets"
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), and Ming He(何明). Chin. Phys. B, 2021, 30(1): 019901.
[11] Magnetic properties of La2CuMnO6 double perovskite ceramic investigated by Monte Carlo simulations
S Mtougui, I EL Housni, N EL Mekkaoui, S Ziti, S Idrissi, H Labrim, R Khalladi, L Bahmad. Chin. Phys. B, 2020, 29(5): 056101.
[12] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
[13] Grain size and structure distortion characterization of α-MgAgSb thermoelectric material by powder diffraction
Xiyang Li(李西阳), Zhigang Zhang(张志刚), Lunhua He(何伦华), Maxim Avdeev, Yang Ren(任洋), Huaizhou Zhao(赵怀周), and Fangwei Wang(王芳卫)†. Chin. Phys. B, 2020, 29(10): 106101.
[14] Influences of grain size and microstructure on optical properties of microcrystalline diamond films
Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(1): 018103.
[15] Fabrication of Tl2Ba2CaCu2O8 superconducting films without thallium pellets
Teng-Da Xu(徐腾达), Jian Xing(邢建), Li-Tian Wang(王荔田), Jin-Li Zhang(张金利), Sheng-Hui Zhao(赵生辉), Yang Xiong(熊阳), Xin-Jie Zhao(赵新杰), Lu Ji(季鲁), Xu Zhang(张旭), Ming He(何明). Chin. Phys. B, 2018, 27(5): 057403.
No Suggested Reading articles found!