Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 090305    DOI: 10.1088/1674-1056/add4de
GENERAL Prev   Next  

Impact of surface passivation on the electrical stability of strained germanium devices

Zong-Hu Li(李宗祜)1,2, Mao-Lin Wang(王茂粼)1,2, Zhen-Zhen Kong(孔真真)3,4,5,6, Gui-Lei Wang(王桂磊)3,5,6,‡, Yuan Kang(康原)1,2, Yong-Qiang Xu(徐永强)1,2, Rui Wu(吴睿)1,2, Tian-Yue Hao(郝天岳)1,2, Ze-Cheng Wei(魏泽成)1,2, Bao-Chuan Wang(王保传)1,2, Hai-Ou Li(李海欧)1,2,5, Gang Cao(曹刚)1,2,5,†, and Guo-Ping Guo(郭国平)1,2,5,7
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China;
3 Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China;
4 Institute of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China;
5 Hefei National Laboratory, Hefei 230088, China;
6 Beijing Superstring Academy of Memory Technology, Beijing 100176, China;
7 Origin Quantum Computing Company Limited, Hefei 230088, China
Abstract  Strained germanium hole spin qubits are promising for quantum computing, but the devices hosting these qubits face challenges from high interface trap density, which originates from the naturally oxidized surface of the wafer. These traps can degrade the device stability and cause an excessively high threshold voltage. Surface passivation is regarded as an effective method to mitigate these impacts. In this study, we perform low-thermal-budget chemical passivation using the nitric acid oxidation of silicon method on the surface of strained germanium devices and investigate the impact of passivation on the device stability. The results demonstrate that surface passivation effectively reduces the interface defect density. This not only improves the stability of the device's threshold voltage but also enhances its long-term static stability. Furthermore, we construct a band diagram of hole surface tunneling at the static operating point to gain a deeper understanding of the physical mechanism through which passivation affects the device stability. This study provides valuable insights for future optimization of strained Ge-based quantum devices and advances our understanding of how interface states affect device stability.
Keywords:  hole      strained germanium      interface trap      stability      surface passivation  
Received:  17 February 2025      Revised:  22 April 2025      Accepted manuscript online:  07 May 2025
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92265113, 12034018, 12474490, and 62404248) and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302300).
Corresponding Authors:  Gang Cao, Gui-Lei Wang     E-mail:  gcao@ustc.edu.cn;guilei.wang@bjsamt.org.cn

Cite this article: 

Zong-Hu Li(李宗祜), Mao-Lin Wang(王茂粼), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Yuan Kang(康原), Yong-Qiang Xu(徐永强), Rui Wu(吴睿), Tian-Yue Hao(郝天岳), Ze-Cheng Wei(魏泽成), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平) Impact of surface passivation on the electrical stability of strained germanium devices 2025 Chin. Phys. B 34 090305

[1] Fischer J and Loss D 2010 Phys. Rev. Lett. 105 266603
[2] Prechtel J H, Kuhlmann A V, Houel J, Ludwig A, Valentin S R, Wieck A D and Warburton R J 2016 Nat. Mater. 15 981
[3] Bosco S and Loss D 2021 Phys. Rev. Lett. 127 190501
[4] Fang Y A, Philippopoulos P, Culcer D, Coish W A and Chesi S 2023 Mater. Quantum Technol. 3 012003
[5] Bulaev D V and Loss D 2007 Phys. Rev. Lett. 98 097202
[6] Hendrickx N W, Franke D P, Sammak A, Scappucci G and Veldhorst M 2020 Nature 577 487
[7] Wang Z N, Marcellina E, Hamilton A R, Cullen J H, Rogge S, Salfi J and Culcer D 2021 Npj Quantum Inf. 7 54
[8] Sammak A, Sabbagh D, Hendrickx NW, Lodari M, PaqueletWuetz B, Tosato A, Yeoh L, Bollani M, Virgilio M, Schubert M A, Zaumseil P, Capellini G, Veldhorst M and Scappucci G 2019 Adv. Funct. Mater. 29 1807613
[9] Scappucci G, Kloeffel C, Zwanenburg F A, Loss D, Myronov M, Zhang J J, De Franceschi S, Katsaros G and Veldhorst M 2020 Nat. Rev. Mater. 6 926
[10] Hendrickx N W, Lawrie W I L, Petit L, Sammak A, Scappucci G and Veldhorst M 2020 Nat. Commun. 11 3478
[11] Jirovec D, Hofmann A, Ballabio A, Mutter P M, Tavani G, Botifoll M, Crippa A, Kukucka J, Sagi O, Martins F, Saez-Mollejo J, Prieto I, Borovkov M, Arbiol J, Chrastina D, Isella G and Katsaros G 2021 Nat. Mater. 20 1106
[12] Sagi O, Crippa A, Valentini M, Janik M, Baghumyan L, Fabris G, Kapoor L, Hassani F, Fink J, Calcaterra S, Chrastina D, Isella G and Katsaros G 2024 Nat. Commun. 15 6400
[13] Hendrickx N W, Lawrie W I L, Russ M, van Riggelen F, de Snoo S L, Schouten R N, Sammak A, Scappucci G and Veldhorst M 2021 Nature 591 580
[14] Borsoi F, Hendrickx N W, John V, Meyer M, Motz S, van Riggelen F, Sammak A, de Snoo S L, Scappucci G and Veldhorst M 2023 Nat. Nanotechnol. 19 21
[15] Lawrie W I L, Rimbach-Russ M, van Riggelen F, Hendrickx N W, de Snoo S L, Sammak A, Scappucci G, Helsen J and Veldhorst M 2023 Nat. Commun. 14 3617
[16] Zhang X, Morozova E, Rimbach-Russ M, Jirovec D, Hsiao T K, Farina P C, Wang C A, Oosterhout S D, Sammak A, Scappucci G, Veldhorst M and Vandersypen L M K 2025 Nat. Nanotechnol. 20 209
[17] van Riggelen-Doelman F,Wang C A, de Snoo S L, LawrieWI L, Hendrickx NW, Rimbach-Russ M, Sammak A, Scappucci G, Déprez C and Veldhorst M 2024 Nat. Commun. 15 5716
[18] Kang Y, Li Z H, Kong Z Z, Li F G, Hao T Y,Wei Z C, Deng S Y,Wang B C, Li H O,Wang G L, Guo G C, Cao G and Guo G P 2024 Phys. Rev. Appl. 22 024054
[19] De Palma F, Oppliger F, Jang W, Bosco S, Janík M, Calcaterra S, Katsaros G, Isella G, Loss D and Scarlino P 2024 Nat. Commun. 15 10177
[20] Janík M, Roux K, Borja-Espinosa C, Sagi O, Baghdadi A, Adletzberger T, Calcaterra S, Botifoll M, Garzón Manjón A, Arbiol J, Chrastina D, Isella G, Pop I M and Katsaros G 2025 Nat. Commun. 16 2103
[21] Su Y H, Chuang Y, Liu C Y, Li J Y and Lu T M 2017 Phys. Rev. Mater. 1 044601
[22] Lodari M, Tosato A, Sabbagh D, Schubert M A, Capellini G, Sammak A, Veldhorst M and Scappucci G 2019 Phys. Rev. B 100 041304
[23] Kong Z Z, Li Z H, Cao G, Li H O, Su J L, Zhang Y W, Liu J B, Guo G P, Li J F, Luo J, Zhao C, Ye T C and Wang G L 2023 ACS Appl. Mater. Interfaces 15 28799
[24] Massai L, Hetényi B, Mergenthaler M, Schupp F J, Sommer L, Paredes S, Bedell S W, Harvey-Collard P, Salis G, Fuhrer A and Hendrickx N W 2024 Commun. Mater. 5 151
[25] Meyer M, Déprez C, van Abswoude T R, Meijer I N, Liu D, Wang C A, Karwal S, Oosterhout S, Borsoi F, Sammak A, Hendrickx N W, Scappucci G and Veldhorst M 2023 Nano Lett. 23 2522
[26] Li Y X, Kong Z, Hou S, Wang G and Huang S 2023 Phys. Rev. B 108 045303
[27] Zhang Y W, Li Z H, Zhou Y C, Ren Y H, Ke J H, Su J L, Song Y P, Deng J, Liu Y, Zhang R Z, Li H O, Wang B C, Wu Z H, Luo J, Kong Z Z, Cao G, Guo G P, Zhao C and Wang G L 2024 Phys. Rev. Mater. 8 046203
[28] Ruggiero L, Nigro A, Zardo I and Hofmann A 2024 Nano Lett. 24 13263
[29] Kong Z Z, Li Z H, Zhou Y C, Cao G, Li H O, Su J L, Zhang Y W, Liu J B, Guo G P, Li J F, Luo J, Zhao C, Ye T C andWang G L 2024 arXiv: 2410.00768 [cond-mat.mes-hall]
[30] Nakajima T, Kojima Y, Uehara Y, Noiri A, Takeda K, Kobayashi T and Tarucha S 2021 Phys. Rev. Appl. 15 L031003
[31] Kobayashi T, Nakajima T, Takeda K, Noiri A, Yoneda J and Tarucha S 2023 Npj Quantum Inf. 9 52
[32] Sangwan N, Jutzi E, Olsen C, Vogel S, Nigro A, Zardo I and Hofmann A 2024 arXiv: 2411.03995 [cond-mat.mes-hall]
[33] Spruijtenburg P C, Amitonov S V, van der Wiel W G and Zwanenburg F A 2018 Nanotechnology 29 143001
[34] Thoan N H, Keunen K, Afanas’ev V V and Stesmans A 2011 J. Appl. Phys. 109 013710
[35] Hutchins-Delgado T A, Miller A J, Scott R, Lu P, Luhman D R and Lu T M 2022 ACS Appl. Electron. Mater. 4 4482
[36] Ha W, Ha S D, Choi M D, Tang Y, Schmitz A E, Levendorf M P, Lee K, Chappell J M, Adams T S, Hulbert D R, Acuna E, Noah R S, Matten J W, Jura M P, Wright J A, Rakher M T and Borselli M G 2022 Nano Lett. 22 1443
[37] Paquelet Wuetz B, Degli Esposti D, Zwerver A M J, Amitonov S V, Botifoll M, Arbiol J, Sammak A, Vandersypen L M K, Russ M and Scappucci G 2023 Nat. Commun. 14 1385
[38] Schulz M 1983 Surf. Sci. 132 422
[39] Kobayashi H, Imamura K, Kim W B, Im S S and Asuha 2010 Appl. Surf. Sci. 256 5744
[40] Holman N, Rosenberg D, Yost D, Yoder J L, Das R, Oliver W D, Mc- Dermott R and Eriksson M A 2021 Npj Quantum Inf. 7 137
[41] Philips S G J, Amitonov S V, de Snoo S L, Russ M, Kalhor N, Volk C, Lawrie W I L, Brousse D, Tryputen L, Wuetz B P, Sammak A, Veldhorst M, Scappucci G and Vandersypen L M K 2022 Nature 609 919
[42] Sze S M and Ng K K 2006 Physics of Semiconductor Devices 3rd Edn. (John Wiley & Sons)
[1] Exciton dynamics and random lasing in surface-passivated CdSe/CdSeS core/crown nanoplatelets
Huan Liu(刘欢), Puning Wang(王谱宁), and Rui Chen(陈锐). Chin. Phys. B, 2025, 34(9): 094201.
[2] Extremely large magnetoresistance in single-crystalline ZrBi2
Cundong Li(李存东), Binbin Ruan(阮彬彬), Qingxin Dong(董庆新), Jianli Bai(白建利), Libo Zhang(张黎博), Qiaoyu Liu(刘乔宇), Jingwen Cheng(程靖雯), Pinyu Liu(刘品宇), Yu Huang(黄宇), Yingrui Sun(孙英睿), Zhian Ren(任治安), and Genfu Chen(陈根富). Chin. Phys. B, 2025, 34(9): 097307.
[3] Analysis and design of multivalued many-to-one associative memory driven by external inputs
Qiang Fang(方强) and Hao Zhang(张浩). Chin. Phys. B, 2025, 34(8): 080701.
[4] Dark-gap solitons with mixed nonlinear and linear lattices
Xue-Fei Zhang(张雪菲), Xiao-Yang Wang(王笑阳), Hui-Lian Wei(魏慧莲), and Tian-Fu Xu(徐天赋). Chin. Phys. B, 2025, 34(8): 080303.
[5] Real-time observations of the transition dynamics between multiple nonlinear states in a coherently driven Kerr fiber-loop resonator
Yayu Cao(曹亚昱), Heng Dong(董恒), and Xiankun Yao(姚献坤). Chin. Phys. B, 2025, 34(7): 074206.
[6] Spatial electron tunneling leads to space-charge-limited current in organic hole transport materials
Shaofeng Chen(陈绍枫), Yanfei Lu(鲁燕飞), Dongcheng Chen(陈东成), and Shi-Jian Su(苏仕健). Chin. Phys. B, 2025, 34(7): 078101.
[7] Theoretical investigation of potential superconductivity in Sr-doped La3Ni2O7 at ambient pressure
Lei Shi(石磊), Ying Luo(罗颖), Wei Wu(吴为), and Yunwei Zhang(张云蔚). Chin. Phys. B, 2025, 34(7): 077403.
[8] Global dynamics and optimal control of SEIQR epidemic model on heterogeneous complex networks
Xiongding Liu(柳雄顶), Xiaodan Zhao(赵晓丹), Xiaojing Zhong(钟晓静), and Wu Wei(魏武). Chin. Phys. B, 2025, 34(6): 060203.
[9] Depolymerization mechanism of microtubule revealed by nucleotide-dependent changes of longitudinal and lateral interactions
Bingbing Zhang(张冰冰), Ziling Huo(霍子玲), Jiaxi Li(李佳希), Jingyu Qin(覃静宇), and Yizhao Geng(耿轶钊). Chin. Phys. B, 2025, 34(6): 068702.
[10] Synergistic bulk and surface engineering via rapid quenching for high-performance Li-rich layered manganese oxide cathodes
Xinyun Xiong(熊馨筠), Sichen Jiao(焦思晨), Qinghua Zhang(张庆华), Luyao Wang(王璐瑶), Kun Zhou(周坤), Bowei Cao(曹博维), Xilin Xu(徐熙林), Xiqian Yu(禹习谦), and Hong Li(李泓). Chin. Phys. B, 2025, 34(5): 058201.
[11] Enhancement of four-wave mixing due to coherent hole burning in a degenerate two-level system
Zhi-Yuan Liu(刘知远), Yi-Fan Yao(姚一凡), Yue Sun(孙悦), Jia-Yu Han(韩佳瑜), and Ying-Jie Du(杜英杰). Chin. Phys. B, 2025, 34(5): 054203.
[12] Electronic structure of a narrow-gap semiconductor KAg3Te2
Rong Feng(冯荣), Haotian Zheng(郑昊天), Haoran Liu(刘浩然), Binru Zhao(赵彬茹), Xunqing Yin(尹训庆), Zhihua Liu(刘智华), Feng Liu(刘峰), Guohua Wang(王国华), Xiaofeng Xu(许晓峰), Wentao Zhang(张文涛), Weidong Luo(罗卫东), Wei Zhou(周苇), and Dong Qian(钱冬). Chin. Phys. B, 2025, 34(4): 047102.
[13] Analysis and image encryption of memristive chaotic system with coexistence bubble
Da Qiu(邱达), Bo Zhang(张博), Tingting Zhang(张婷婷), Song Liu(刘嵩), and Peiyu He(何培宇). Chin. Phys. B, 2025, 34(4): 040203.
[14] Turing instability-induced oscillations in coupled reaction-diffusion systems
Nan Wang(王楠), Yuan Tong(仝源), Fucheng Liu(刘富成), Xiaoxuan Li(李晓璇), Yafeng He(贺亚峰), and Weili Fan(范伟丽). Chin. Phys. B, 2025, 34(3): 038201.
[15] Hawking radiation and Page curve of regular black holes
Chen-Yang Dong(董晨阳) and Li-Jun Tian(田立君). Chin. Phys. B, 2025, 34(2): 020401.
No Suggested Reading articles found!