|
|
|
Impact of surface passivation on the electrical stability of strained germanium devices |
| Zong-Hu Li(李宗祜)1,2, Mao-Lin Wang(王茂粼)1,2, Zhen-Zhen Kong(孔真真)3,4,5,6, Gui-Lei Wang(王桂磊)3,5,6,‡, Yuan Kang(康原)1,2, Yong-Qiang Xu(徐永强)1,2, Rui Wu(吴睿)1,2, Tian-Yue Hao(郝天岳)1,2, Ze-Cheng Wei(魏泽成)1,2, Bao-Chuan Wang(王保传)1,2, Hai-Ou Li(李海欧)1,2,5, Gang Cao(曹刚)1,2,5,†, and Guo-Ping Guo(郭国平)1,2,5,7 |
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China; 2 CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China; 3 Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; 4 Institute of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China; 5 Hefei National Laboratory, Hefei 230088, China; 6 Beijing Superstring Academy of Memory Technology, Beijing 100176, China; 7 Origin Quantum Computing Company Limited, Hefei 230088, China |
|
|
|
|
Abstract Strained germanium hole spin qubits are promising for quantum computing, but the devices hosting these qubits face challenges from high interface trap density, which originates from the naturally oxidized surface of the wafer. These traps can degrade the device stability and cause an excessively high threshold voltage. Surface passivation is regarded as an effective method to mitigate these impacts. In this study, we perform low-thermal-budget chemical passivation using the nitric acid oxidation of silicon method on the surface of strained germanium devices and investigate the impact of passivation on the device stability. The results demonstrate that surface passivation effectively reduces the interface defect density. This not only improves the stability of the device's threshold voltage but also enhances its long-term static stability. Furthermore, we construct a band diagram of hole surface tunneling at the static operating point to gain a deeper understanding of the physical mechanism through which passivation affects the device stability. This study provides valuable insights for future optimization of strained Ge-based quantum devices and advances our understanding of how interface states affect device stability.
|
Received: 17 February 2025
Revised: 22 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
| |
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
| |
68.65.Hb
|
(Quantum dots (patterned in quantum wells))
|
| |
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 92265113, 12034018, 12474490, and 62404248) and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302300). |
Corresponding Authors:
Gang Cao, Gui-Lei Wang
E-mail: gcao@ustc.edu.cn;guilei.wang@bjsamt.org.cn
|
Cite this article:
Zong-Hu Li(李宗祜), Mao-Lin Wang(王茂粼), Zhen-Zhen Kong(孔真真), Gui-Lei Wang(王桂磊), Yuan Kang(康原), Yong-Qiang Xu(徐永强), Rui Wu(吴睿), Tian-Yue Hao(郝天岳), Ze-Cheng Wei(魏泽成), Bao-Chuan Wang(王保传), Hai-Ou Li(李海欧), Gang Cao(曹刚), and Guo-Ping Guo(郭国平) Impact of surface passivation on the electrical stability of strained germanium devices 2025 Chin. Phys. B 34 090305
|
[1] Fischer J and Loss D 2010 Phys. Rev. Lett. 105 266603 [2] Prechtel J H, Kuhlmann A V, Houel J, Ludwig A, Valentin S R, Wieck A D and Warburton R J 2016 Nat. Mater. 15 981 [3] Bosco S and Loss D 2021 Phys. Rev. Lett. 127 190501 [4] Fang Y A, Philippopoulos P, Culcer D, Coish W A and Chesi S 2023 Mater. Quantum Technol. 3 012003 [5] Bulaev D V and Loss D 2007 Phys. Rev. Lett. 98 097202 [6] Hendrickx N W, Franke D P, Sammak A, Scappucci G and Veldhorst M 2020 Nature 577 487 [7] Wang Z N, Marcellina E, Hamilton A R, Cullen J H, Rogge S, Salfi J and Culcer D 2021 Npj Quantum Inf. 7 54 [8] Sammak A, Sabbagh D, Hendrickx NW, Lodari M, PaqueletWuetz B, Tosato A, Yeoh L, Bollani M, Virgilio M, Schubert M A, Zaumseil P, Capellini G, Veldhorst M and Scappucci G 2019 Adv. Funct. Mater. 29 1807613 [9] Scappucci G, Kloeffel C, Zwanenburg F A, Loss D, Myronov M, Zhang J J, De Franceschi S, Katsaros G and Veldhorst M 2020 Nat. Rev. Mater. 6 926 [10] Hendrickx N W, Lawrie W I L, Petit L, Sammak A, Scappucci G and Veldhorst M 2020 Nat. Commun. 11 3478 [11] Jirovec D, Hofmann A, Ballabio A, Mutter P M, Tavani G, Botifoll M, Crippa A, Kukucka J, Sagi O, Martins F, Saez-Mollejo J, Prieto I, Borovkov M, Arbiol J, Chrastina D, Isella G and Katsaros G 2021 Nat. Mater. 20 1106 [12] Sagi O, Crippa A, Valentini M, Janik M, Baghumyan L, Fabris G, Kapoor L, Hassani F, Fink J, Calcaterra S, Chrastina D, Isella G and Katsaros G 2024 Nat. Commun. 15 6400 [13] Hendrickx N W, Lawrie W I L, Russ M, van Riggelen F, de Snoo S L, Schouten R N, Sammak A, Scappucci G and Veldhorst M 2021 Nature 591 580 [14] Borsoi F, Hendrickx N W, John V, Meyer M, Motz S, van Riggelen F, Sammak A, de Snoo S L, Scappucci G and Veldhorst M 2023 Nat. Nanotechnol. 19 21 [15] Lawrie W I L, Rimbach-Russ M, van Riggelen F, Hendrickx N W, de Snoo S L, Sammak A, Scappucci G, Helsen J and Veldhorst M 2023 Nat. Commun. 14 3617 [16] Zhang X, Morozova E, Rimbach-Russ M, Jirovec D, Hsiao T K, Farina P C, Wang C A, Oosterhout S D, Sammak A, Scappucci G, Veldhorst M and Vandersypen L M K 2025 Nat. Nanotechnol. 20 209 [17] van Riggelen-Doelman F,Wang C A, de Snoo S L, LawrieWI L, Hendrickx NW, Rimbach-Russ M, Sammak A, Scappucci G, Déprez C and Veldhorst M 2024 Nat. Commun. 15 5716 [18] Kang Y, Li Z H, Kong Z Z, Li F G, Hao T Y,Wei Z C, Deng S Y,Wang B C, Li H O,Wang G L, Guo G C, Cao G and Guo G P 2024 Phys. Rev. Appl. 22 024054 [19] De Palma F, Oppliger F, Jang W, Bosco S, Janík M, Calcaterra S, Katsaros G, Isella G, Loss D and Scarlino P 2024 Nat. Commun. 15 10177 [20] Janík M, Roux K, Borja-Espinosa C, Sagi O, Baghdadi A, Adletzberger T, Calcaterra S, Botifoll M, Garzón Manjón A, Arbiol J, Chrastina D, Isella G, Pop I M and Katsaros G 2025 Nat. Commun. 16 2103 [21] Su Y H, Chuang Y, Liu C Y, Li J Y and Lu T M 2017 Phys. Rev. Mater. 1 044601 [22] Lodari M, Tosato A, Sabbagh D, Schubert M A, Capellini G, Sammak A, Veldhorst M and Scappucci G 2019 Phys. Rev. B 100 041304 [23] Kong Z Z, Li Z H, Cao G, Li H O, Su J L, Zhang Y W, Liu J B, Guo G P, Li J F, Luo J, Zhao C, Ye T C and Wang G L 2023 ACS Appl. Mater. Interfaces 15 28799 [24] Massai L, Hetényi B, Mergenthaler M, Schupp F J, Sommer L, Paredes S, Bedell S W, Harvey-Collard P, Salis G, Fuhrer A and Hendrickx N W 2024 Commun. Mater. 5 151 [25] Meyer M, Déprez C, van Abswoude T R, Meijer I N, Liu D, Wang C A, Karwal S, Oosterhout S, Borsoi F, Sammak A, Hendrickx N W, Scappucci G and Veldhorst M 2023 Nano Lett. 23 2522 [26] Li Y X, Kong Z, Hou S, Wang G and Huang S 2023 Phys. Rev. B 108 045303 [27] Zhang Y W, Li Z H, Zhou Y C, Ren Y H, Ke J H, Su J L, Song Y P, Deng J, Liu Y, Zhang R Z, Li H O, Wang B C, Wu Z H, Luo J, Kong Z Z, Cao G, Guo G P, Zhao C and Wang G L 2024 Phys. Rev. Mater. 8 046203 [28] Ruggiero L, Nigro A, Zardo I and Hofmann A 2024 Nano Lett. 24 13263 [29] Kong Z Z, Li Z H, Zhou Y C, Cao G, Li H O, Su J L, Zhang Y W, Liu J B, Guo G P, Li J F, Luo J, Zhao C, Ye T C andWang G L 2024 arXiv: 2410.00768 [cond-mat.mes-hall] [30] Nakajima T, Kojima Y, Uehara Y, Noiri A, Takeda K, Kobayashi T and Tarucha S 2021 Phys. Rev. Appl. 15 L031003 [31] Kobayashi T, Nakajima T, Takeda K, Noiri A, Yoneda J and Tarucha S 2023 Npj Quantum Inf. 9 52 [32] Sangwan N, Jutzi E, Olsen C, Vogel S, Nigro A, Zardo I and Hofmann A 2024 arXiv: 2411.03995 [cond-mat.mes-hall] [33] Spruijtenburg P C, Amitonov S V, van der Wiel W G and Zwanenburg F A 2018 Nanotechnology 29 143001 [34] Thoan N H, Keunen K, Afanas’ev V V and Stesmans A 2011 J. Appl. Phys. 109 013710 [35] Hutchins-Delgado T A, Miller A J, Scott R, Lu P, Luhman D R and Lu T M 2022 ACS Appl. Electron. Mater. 4 4482 [36] Ha W, Ha S D, Choi M D, Tang Y, Schmitz A E, Levendorf M P, Lee K, Chappell J M, Adams T S, Hulbert D R, Acuna E, Noah R S, Matten J W, Jura M P, Wright J A, Rakher M T and Borselli M G 2022 Nano Lett. 22 1443 [37] Paquelet Wuetz B, Degli Esposti D, Zwerver A M J, Amitonov S V, Botifoll M, Arbiol J, Sammak A, Vandersypen L M K, Russ M and Scappucci G 2023 Nat. Commun. 14 1385 [38] Schulz M 1983 Surf. Sci. 132 422 [39] Kobayashi H, Imamura K, Kim W B, Im S S and Asuha 2010 Appl. Surf. Sci. 256 5744 [40] Holman N, Rosenberg D, Yost D, Yoder J L, Das R, Oliver W D, Mc- Dermott R and Eriksson M A 2021 Npj Quantum Inf. 7 137 [41] Philips S G J, Amitonov S V, de Snoo S L, Russ M, Kalhor N, Volk C, Lawrie W I L, Brousse D, Tryputen L, Wuetz B P, Sammak A, Veldhorst M, Scappucci G and Vandersypen L M K 2022 Nature 609 919 [42] Sze S M and Ng K K 2006 Physics of Semiconductor Devices 3rd Edn. (John Wiley & Sons) |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|