Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(2): 020401    DOI: 10.1088/1674-1056/ad989b
GENERAL Prev   Next  

Hawking radiation and Page curve of regular black holes

Chen-Yang Dong(董晨阳) and Li-Jun Tian(田立君)†
Department of Physics, Shanghai University, Shanghai 200444, China
Abstract  We discuss the information paradox and its implications for regular black holes. Our primary focus is on Page curve using the island treatment and analyzing relevant parameters like Page time and scrambling time. Calculations without considering the island show that the entanglement entropy increases linearly and continues to infinity. When we consider the generalized entropy, we find that the island extends just beyond the horizon, leading to a constant entanglement entropy. Specifically, we find that in the early stages, the island never forms, regardless of the charge and mass configuration of the black hole.
Keywords:  black holes      AdS/CFT correspondence      Page curve  
Received:  25 June 2024      Revised:  26 October 2024      Accepted manuscript online: 
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12275166 and 12311540141).
Corresponding Authors:  Li-Jun Tian     E-mail:  asahi@shu.edu.cn;tianlijun@shu.edu.cn

Cite this article: 

Chen-Yang Dong(董晨阳) and Li-Jun Tian(田立君)† Hawking radiation and Page curve of regular black holes 2025 Chin. Phys. B 34 020401

[1] Hawking S W 1976 Phys. Rev. D 14 2460
[2] Hawking S W 1975 Commun. Math. Phys. 43 199
[3] Bardeen J M, Carter B and Hawking S W 1973 Commun. Math. Phys. 31 161
[4] Wald R M 1975 Commun. Math. Phys. 45 9
[5] Page D N 1993 Phys. Rev. Lett. 71 3743
[6] Maldacena J 1999 Int. J. Theor. Phys. 38 1113
[7] Horowitz G T and Maldacena J 2004 Journal of High Energy Physics 2004 008
[8] Ge X H and Shen Y G 2005 Phys. Lett. B 612 61
[9] Ge X H and Shen Y G 2004 Classical and Quantum Gravity 21 1941
[10] Almheiri A, Mahajan R, Maldacena J and Zhao Y 2020 Journal of High Energy Physics 2020 149
[11] Ryu S and Takayanagi T 2006 Phys. Rev. Lett. 96 181602
[12] Barrella T, Dong X, Hartnoll S A and Martin V L 2013 Journal of High Energy Physics 2013 1
[13] Faulkner T, Lewkowycz A and Maldacena J 2013 Journal of High Energy Physics 2013 60
[14] Engelhardt N and Wall A C 2015 Journal of High Energy Physics 2015 73
[15] Almheiri A, Engelhardt N, Marolf D and Maxfield H 2019 Journal of High Energy Physics 2019 63
[16] Penington G 2020 Journal of High Energy Physics 2020 1
[17] Srednicki M 1993 Phys. Rev. Lett. 71 666
[18] Bombelli L, Koul R K, Lee J and Sorkin R D 1986 Phys. Rev. D 34 373
[19] Susskind L and Uglum J 1994 Phys. Rev. D 50 2700
[20] Lu C Y, Yu M H, Ge X H, et al. 2023 Eur. Phys. J. C 83 215
[21] Gao P and Lamprou L 2022 Journal of High Energy Physics 2022 1
[22] Maldacena J and Milekhin A 2021 Journal of High Energy Physics 2021 139
[23] Almheiri A, Hartman T, Maldacena J, Shaghoulian E and Tajdini A 2021 Rev. Mod. Phys. 93 035002
[24] Almheiri A, Mahajan R and Maldacena J 2019 arXiv preprint arXiv: 1910.11077 ArXiv:1910.11077[hep-th]
[25] Penington G, Shenker S H, Stanford D and Yang Z 2022 Journal of High Energy Physics 2022 205
[26] Saad P, Shenker S H and Stanford D 2018 arXiv preprint
[27] Rosenhaus V 2019 J. Phys. A:Math. Theor. 52 323001
[28] Raju S 2022 Classical and Quantum Gravity 39 064002
[29] Geng H, Karch A, Perez-Pardavila C, Raju S, Randall L, Riojas M and Shashi S 2022 Journal of High Energy Physics 2022 182
[30] He S, Sun Y, Zhao L and Zhang Y X 2022 Journal of High Energy Physics 2022 47
[31] Krishnan C, Patil V and Pereira J 2020 arXiv preprint arXiv: 2005.02993
[32] Gautason F F, Schneiderbauer L, Sybesma W and Thorlacius L 2020 Journal of High Energy Physics 2020 91
[33] Anegawa T and Iizuka N 2020 Journal of High Energy Physics 2020 1
[34] Hashimoto K, Iizuka N and Matsuo Y 2020 Journal of High Energy Physics 2020 85
[35] Wang X, Li R and Wang J 2021 Journal of High Energy Physics 2021 1
[36] Yu M H, Lu C Y, Ge X H and Sin S J 2022 Phys. Rev. D 105 066009
[37] Caceres E, Kundu A, Patra A K and Shashi S 2021 Journal of High Energy Physics 2021 4
[38] Ahn B, Bak S E, Jeong H S, Kim K Y and Sun Y W 2022 Phys. Rev. D 105 046012
[39] Yu M H and Ge X H 2022 Eur. Phys. J. C 82 14
[40] Geng H, Lust S, Mishra R K and Wakeham D 2021 Journal of High Energy Physics 2021 3
[41] Anand A 2023 arXiv preprint arXiv:2308.05432
[42] Lu C Y, Yu M H, Ge X H and Tian L J 2023 Eur. Phys. J. C 83 215
[43] Yu M H and Ge X H 2023 Phys. Rev. D 107 066020
[44] Yu M H, Ge X H and Lu C Y 2023 Eur. Phys. J. C 83 1104
[45] Lin S Y, Yu M H, Ge X H and Tian L J 2024 arXiv preprint arXiv 2405.06873
[46] Lan C, Yang H, Guo Y and Miao Y G 2023 Int. J. Theor. Phys. 62 202
[47] Ansoldi S 2008 Spherical black holes with regular center:a review of existing models including a recent realization with Gaussian sources
[48] Bardeen J 1968 Proceedings of the 5th International Conference on Gravitation and the Theory of Relativity p. 87
[49] Hayward S A 2006 Phys. Rev. Lett. 96 031103
[50] Frolov V P 2014 Journal of High Energy Physics 2014 1
[51] Lan C and Miao Y G 2023 Chin. Phys. Lett. 40 120401
[52] Xiang L, Ling Y and Shen Y G 2013 Int. J. Mod. Phys. D 22 1342016
[53] Culetu H 2013 arXiv preprint arXiv:1305.5964
[54] Ling Y and Wu M H 2023 Classical and Quantum Gravity 40 075009
[55] Hayward S A 2005 The disinformation problem for black holes (conference version)(Preprint gr-qc/0504037)
[56] Pradhan P and Majumdar P 2011 Phys. Lett. A 375 474
[57] Maldacena J and Susskind L 2013 Fortschritte der Physik 61 781
[1] Application of Newtonian approximate model to LIGO gravitational wave data processing
Jie Wu(吴洁), Jin Li(李瑾), and Qing-Quan Jiang(蒋青权). Chin. Phys. B, 2023, 32(9): 090401.
[2] Simulation of the gravitational wave frequency distribution of neutron star-black hole mergers
Jianwei Zhang(张见微), Chengmin Zhang(张承民), Di Li(李菂), Xianghan Cui(崔翔翰), Wuming Yang(杨伍明), Dehua Wang(王德华), Yiyan Yang(杨佚沿), Shaolan Bi(毕少兰), and Xianfei Zhang(张先飞). Chin. Phys. B, 2021, 30(12): 120401.
[3] Holographic heat engine efficiency of hyperbolic charged black holes
Wei Sun(孙威) and Xian-Hui Ge(葛先辉). Chin. Phys. B, 2021, 30(10): 109501.
[4] Geometry and thermodynamics of smeared Reissner-Nordström black holes in d-dimensional AdS spacetime
Bo-Bing Ye(叶伯兵), Ju-Hua Chen(陈菊华), Yong-Jiu Wang(王永久). Chin. Phys. B, 2017, 26(9): 090202.
[5] Discussion on the event horizon and quantum ergosphere of dynamic rotating black holes in a tunneling framework
Liu Bai-Sheng(刘佰生) and Zhang Jing-Yi(张靖仪) . Chin. Phys. B, 2012, 21(7): 070402.
[6] Fermion tunneling from squashed black holes in the Gödel universe and charged Kaluza–Klein space–time
Li Hui-Ling(李慧玲) . Chin. Phys. B, 2011, 20(3): 030402.
[7] Nonlinear electrodynamics coupled to teleparallel theory of gravity
Gamal G. L. Nashed. Chin. Phys. B, 2011, 20(2): 020402.
[8] Brane world black holes in teleparallel theory equivalent to general relativity and their Killing vectors, energy, momentum and angular momentum
Gamal G.L. Nashed. Chin. Phys. B, 2010, 19(2): 020401.
[9] Subleading terms of thermodynamic quantities around static spherical black holes
Li Gu-Qiang(李固强). Chin. Phys. B, 2009, 18(1): 66-69.
[10] Nonthermal effect of dilatonic black holes
Lü Jun-Li (吕君丽). Chin. Phys. B, 2005, 14(2): 263-267.
[11] Magnetic extraction of energy from black hole accretion disc and its application to astrophysics
Ye Yong-Chun (叶永春), Wang Ding-Xiong (汪定雄), Gong Xiao-Long (龚小龙). Chin. Phys. B, 2005, 14(2): 439-447.
[12] Central black hole masses of galaxies
Fan Jun-Hui (樊军辉). Chin. Phys. B, 2003, 12(11): 1310-1316.
No Suggested Reading articles found!