Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 090304    DOI: 10.1088/1674-1056/adcf89
GENERAL Prev   Next  

Mode-pairing quantum key distribution based on heralded pair-coherent source with passive decoy-states

Zhigang Shen(沈志冈)1,†, Yuting Lu(鲁雨婷)1,†, Yang Yu(余杨)1, and Shengmei Zhao(赵生妹)1,2,3,‡
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology, Ministry of Education, Nanjing 210003, China;
3 National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
Abstract  A mode-pairing quantum key distribution based on heralded pair-coherent source with passive decoy-states is proposed, named HPCS-PDS-MP-QKD protocol, where the light sources at Alice and Bob sides are changed to heralded pair-coherent sources, and devices designed to implement passive decoy states are included at the transmitter sides to generate the decoy state pulses in the decoy-state window passively. With the defined efficient events and the designed pairing strategy, the key bits and bases can be obtained by data post-processing. Numerical simulation results verify the feasibility of the proposed protocol. The results show that the proposed protocol can exceed PLOB when the pairing interval setting is greater than $10^{3}$, and the transmission distance exceeds 200 km. When the key transmission distance reaches 300 km and the maximum pairing interval is equivalent to 1, its performance is improved by nearly 1.8 times compared to the original MP-QKD protocol with a weak coherent source (WCS-MP-QKD), and by 6.8 times higher than that of WCS-MP-QKD with passive decoy states (WCS-PDS-MP-QKD). Meanwhile, the key transmission distance can reach 480 km, and surpasses the WCS-PDS-MP-QKD protocol by nearly 40 km. When the total pulse length is greater than $10^{11}$, the key generation rate is almost equal to that of infinite pulses. It is a promising QKD protocol that breaks the PLOB bound without requiring phase tracking and locking, has a longer transmission distance and a higher key generation rate, and eliminates the potential of side channel attack.
Keywords:  mode-pairing quantum key distribution      heralded pair-coherent source      passive decoy-state      key generation rate  
Received:  12 March 2025      Revised:  19 April 2025      Accepted manuscript online:  23 April 2025
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62375140), the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (Grant No. KYCX24 1191 and SJCX25 0315), and the Open Research Fund of the National Laboratory of Solid State Microstructures (Grant No. M36055).
Corresponding Authors:  Shengmei Zhao     E-mail:  zhaosm@njupt.edu.cn

Cite this article: 

Zhigang Shen(沈志冈), Yuting Lu(鲁雨婷), Yang Yu(余杨), and Shengmei Zhao(赵生妹) Mode-pairing quantum key distribution based on heralded pair-coherent source with passive decoy-states 2025 Chin. Phys. B 34 090304

[1] Bennett C H and Brassard G 2014 Theor. Comput. Sci. 560 7
[2] Wang X B 2005 Phys. Rev. Lett. 94 230503
[3] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[4] Tamaki K, Lo H K, Fung C H F and Qi B 2012 Phys. Rev. A 85 042307
[5] Lucamarini M, Yuan Z L, Qi P, Dynes J F and Shields A J 2018 Nature 557 400-403
[6] Pirandola S, Laurenza R, Ottaviani R and Banchi L 2017 Nat. Commun. 8 15043
[7] Liu H, Jiang C, Zhu H T, Zou M, Yu Z W, Hu X L, Xu H, Ma S Z and Han Z Y 2018 Phys. Rev. Lett. 26 5501
[8] Zhong X,Wang W, Qian L and Lo H K 2021 npj Quantum Information 7 8
[9] Clivati C, Meda A, Donadello S and Virzi S 2022 Nat. Commun. 13 157
[10] Wang S,Yin Z Q,He D Y and Chen W 2022 Nat. Photon. 16 154
[11] Ma X F, Zeng L and Zhou H Y 2018 Phys. Rev. X 8 031043
[12] Zeng P, Wu W J and Ma X F 2020 Phys. Rev. Appl. 13 064013
[13] Yu Y, Wang L, Zhao S M and Mao Q P 2021 Opt. Express 29 2227
[14] Wang X B, Yu Z W and Hu X L 2018 Phys. Rev. A 98 062323
[15] Xue K, Zhao SMand Mao Q P 2021 Quantum Information Processing 20 1-16
[16] Lin J and Lutkenhaus N 2018 Phys. Rev. A 980 042332
[17] Wang R, Yin Z Q and Lu F Y 2020 Commun. Phys. 3 149
[18] Li B H, Xie Y M, Li Z and Weng C X 2021 Opt. Lett. 46 5529
[19] Yu Y, Li W, Wang L and Zhao S M 2024 Phys. Rev. A 109 052609
[20] Zeng P, ZHou H Y, Wu W J and Ma X F 2022 Nat. Commun. 13 3903
[21] Xie M Y, Lu Y S, Weng X C and Cao X Y 2022 PRX Quantum 3 020315
[22] Zhu H T, Huang Y Z, Liu H, Zeng P, Zou M and Dai Y Q 2023 Phys. Rev. Lett. 130 030801
[23] Zhou L, Jin J P, Xie Y M and Lu Y S 2023 Phys. Rev. Lett. 130 250801
[24] Li Z H, Dou T Q, Cheng M, Liu Y and Tang J J 2024 Opt. Lett. 49 6609-6612
[25] Jiang M S, Sun S H, Li C Y and Liang L M 2012 Phys. Rev. A 86 032310
[26] Yang X L, Li Y Q and Li H W 2025 Chin. Phys. B 34 020301
[27] Li J J, Wang Y, Li H W and Bao W S 2020 Chin. Phys. B 29 030303
[28] Zhou J P, Zhou Y Y, Gu R W and Zhou X J 2022 Int. J. Quantum Inform. 20 2250005
[29] Wang X, Lu F Y, Wang Z H, YIn Z Q and Wang S 2024 Phys. Rev. A 21 6
[30] Xue K, Shen Z G and Zhao S M 2022 Entropy 24 662
[31] Teng J, Lu F Y and Yin Z Q 2020 New J. Phys. 22 103017
[32] Li Y, Bao W S, Li H W, Zhou C and Wang Y 2025 Chin. Phys. B 24 110307
[33] Wang X B 2013 Phys. Rev. A 87 012320
[34] Schiavon M, Vallone G and Ticozzi F 2016 Phys. Rev. A 93 012331
[35] Han L, Yu Y, Lu W, Xue K, Li W and Zhao S M 2022 Quantum Inf. Process. 22 37
[36] Wang L and Zhao S M 2017 Quantum Inf. Process. 16 1
[37] Lo H K, Curty M and Qi B 2012 Phys. Rev. A 108 130503
[38] Lu Z Y, Wang G, Li C and Cao Z 2024 Phys. Rev. A 109 012401
[39] Zhang Z, Zhao Q, Razavi M and Ma X F 2017 Phys. Rev. A 95 012333
[40] Hu X L, Yu Z W and Wang X B 2018 Phys. Rev. A 98 032303
[41] Ma X F and Razavi M 2012 Phys. Rev. A 86 062319
[1] Mode-pairing quantum key distribution with multi-step advantage distillation
Shizhuo Li(李世卓), Xin Liu(刘馨), Zhenrong Zhang(张振荣), and Kejin Wei(韦克金). Chin. Phys. B, 2025, 34(9): 090307.
[2] Passive decoy-state quantum key distribution for the weak coherent photon source with finite-length key
Yuan Li(李源), Wansu Bao(鲍皖苏), Hongwei Li(李宏伟), Chun Zhou(周淳), Yang Wang(汪洋). Chin. Phys. B, 2016, 25(1): 010305.
No Suggested Reading articles found!