Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(9): 098102    DOI: 10.1088/1674-1056/ad5aec
REVIEW Prev   Next  

Diamond-based electron emission: Structure, properties and mechanisms

Liang-Xue Gu(顾梁雪), Kai Yang(杨凯), Yan Teng(滕妍), Wei-Kang Zhao(赵伟康), Geng-You Zhao(赵耕右), Kang-Kang Fan(凡康康), Bo Feng(冯博), Rong Zhang(张荣), You-Dou Zheng(郑有炓), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Kun Tang(汤琨)†, and Shu-Lin Gu(顾书林)‡
School of Electronic Science and Engineering, Nanjing University, Nanjing 210046, China
Abstract  Diamond has an ultrawide bandgap with excellent physical properties, such as high critical electric field, excellent thermal conductivity, high carrier mobility, etc. Diamond with a hydrogen-terminated (H-terminated) surface has a negative electron affinity (NEA) and can easily produce surface electrons from valence or trapped electrons via optical absorption, thermal heating energy or carrier transport in a PN junction. The NEA of the H-terminated surface enables surface electrons to emit with high efficiency into the vacuum without encountering additional barriers and promotes further development and application of diamond-based emitting devices. This article reviews the electron emission properties of H-terminated diamond surfaces exhibiting NEA characteristics. The electron emission is induced by different physical mechanisms. Recent advancements in electron-emitting devices based on diamond are also summarized. Finally, the current challenges and future development opportunities are discussed to further develop the relevant applications of diamond-based electron-emitting devices.
Keywords:  diamond      negative electron affinity (NEA)      PN junction      electron emission  
Received:  11 April 2024      Revised:  06 June 2024      Accepted manuscript online:  24 June 2024
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.05.ug (Diamond)  
  07.30.Bx (Degasification, residual gas)  
  07.30.Kf (Vacuum chambers, auxiliary apparatus, and materials)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant No. 62274084) and the Fundamental Research Funds for the Central Universities (Grant No. 0210-14380193).
Corresponding Authors:  Kun Tang, Shu-Lin Gu     E-mail:  ktang@nju.edu.cn;slgu@nju.edu.cn

Cite this article: 

Liang-Xue Gu(顾梁雪), Kai Yang(杨凯), Yan Teng(滕妍), Wei-Kang Zhao(赵伟康), Geng-You Zhao(赵耕右), Kang-Kang Fan(凡康康), Bo Feng(冯博), Rong Zhang(张荣), You-Dou Zheng(郑有炓), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Kun Tang(汤琨), and Shu-Lin Gu(顾书林) Diamond-based electron emission: Structure, properties and mechanisms 2024 Chin. Phys. B 33 098102

[1] Mahmood N, Mehmood M Q and Tahir F A 2020 Sci. Rep. 10 18502
[2] Jhong Y S, Tseng H T and Lin S J 2019 J. Alloys Compd. 801 589
[3] Bunkin N, Shkirin A, Babenko V, Sychev A, Lomkova A and Kulikov E 2015 Phys. Wave Phenom. 23 161
[4] Mallik A K, Dandapat N, Chakraborty S, Mandal A K, Ghosh J, Unnikrishnan M, Bysakh S and Balla V K 2014 Process. Appl. Ceram. 8 69
[5] Yang N J, Yu S Y, Macpherson J V, Einaga Y, Zhao H Y, Zhao G H, Swain G M and Jiang X 2019 Chem. Soc. Rev. 48 157
[6] Tang H, Yuan X H, Cheng Y, Fei H Z, Liu F Y, Liang T, Zeng Z D, Ishii T, Wang M S and Katsura T 2021 Nature 599 605
[7] Wan L F, Mu C Y, Liu Y F, Cheng S H, Wang Q L, Li L A, Li H D and Zou G T 2022 Chin. Phys. Lett. 39 036801
[8] Mallik A K, Shivashankar S A and Biswas S K 2009 Sadhana 34 811
[9] Crawford K G, Maini I, Macdonald D A and Moran D A 2021 Prog. Surf. Sci. 96 100613
[10] Makino T, Oyama K, Kato H, Takeuchi D, Ogura M, Okushi H and Yamasaki S 2014 Jpn. J. Appl. Phys. 53 05FA12
[11] Wen B, Zhao J J and Li T J 2013 Int. Mater. Rev. 52 131
[12] Okano K, Yamada T, Sawabe A, Koizumi S, Itoh J and Amaratunga G A J 2001 Appl. Phys. Lett. 79 275
[13] Kageura T, Hideko M, Tsuyuzaki I, Morishita A, Kawano A, Sasama Y, Yamaguchi T, Takano Y, Tachiki M, Ooi S, Hirata K, Arisawa S and Kawarada H 2019 Sci. Rep. 9 15214
[14] Aharonovich I, Greentree A D and Prawer S 2011 Nat. Photonics 5 397
[15] Gao J, Niu J J, Qin S and Wu X 2017 Sci. China: Earth Sci. 60 207
[16] James M C, Fogarty F, Zulkharnay R, Fox N A and May P W 2021 Carbon 171 532
[17] Sankaran K J, Yeh C J, Drijkoningen S, Pobedinskas P, Van Bael M K, Leou K C, Lin I N and Haenen K 2016 Nanotechnology 28 065701
[18] Sankaran K J, Ficek M, Kunuku S, Panda K, Yeh C J, Park J Y, Sawczak M, Michałowski P P, Leou K C and Bogdanowicz R 2018 Nanoscale 10 1345
[19] Shimaoka T, Kuwabara D, Hara A, Makino T, Tanaka M and Koizumi S 2017 Appl. Phys. Lett. 110 212104
[20] Yang H C, Ma Y D and Dai Y 2022 Functional Diamond 1 150
[21] Raymakers J, Haenen K and Maes W 2019 J. Mater. Chem. C 7 10134
[22] Sun T, Koeck F A, Rezikyan A, Treacy M M and Nemanich R J 2014 Phys. Rev. B 90 121302
[23] Salvatori S, Brugnoli E, Rossi M C and Pinzari F 2001 Diamond Relat. Mater. 10 852
[24] Masuzawa T, Shiraki Y, Kudo Y, Saito I, Yamaguchi H, Yamada T and Okano K 2008 Appl. Surf. Sci. 254 6285
[25] Takeuchi D, Ogura M, Ri S G, Kato H, Okushi H and Yamasaki S 2008 Diamond Relat. Mater. 17 986
[26] Salerno R, Valentini V, Bolli E, Mastellone M, Serpente V, Mezzi A, Tortora L, Colantoni E, Bellucci A and Polini R 2024 ACS Appl. Energy Mater. 7 868
[27] Donato N, Rouger N, Pernot J, Longobardi G and Udrea F 2019 J. Phys. D: Appl. Phys. 53 093001
[28] Ikeda T and Teii K 2009 Appl. Phys. Lett. 94 14
[29] Yamada T, Masuzawa T, Mimura H and Okano K 2016 J. Phys. D: Appl. Phys. 49 045102
[30] Takeuchi D, Makino T, Kato H, Okushi H and Yamasaki S 2011 Physica Status Solidi (a) 208 2073 2073
[31] Geis M W, Efremow N N, Krohn K E, Twichell J C, Lyszczarz T M, Kalish R, Greer J A and Tabat M D 1998 Nature 393 431
[32] Sugino T, Kuriyama K, Kimura C, Yokota Y, Kawasaki S and Shirafuji J 1999 J. Appl. Phys. 86 4635
[33] Yamada T, Nebel C E, Rezek B, Takeuchi D, Fujimori N, Namba A, Nishibayashi Y, Yamaguchi H, Saito I and Okano K 2005 Appl. Phys. Lett. 87 234107
[34] Yamada T, Nebel C E, Somu K, Uetsuka H, Yamaguchi H, Kudo Y, Okano K and Shikata S I 2007 Physica Status Solidi (a) 204 2957
[35] Lloret F, Sankaran K J, Millan-Barba J, Desta D, Rouzbahani R, Pobedinskas P, Gutierrez M, Boyen H G and Haenen K 2020 Nanomaterials (Basel) 10 1024
[36] Sankaran K J, Chen H C, Sundaravel B, Lee C Y, Tai N H and Lin I N 2013 Appl. Phys. Lett. 102 061604
[37] Kachwala A, Chubenko O, Kim D, Simakov E and Karkare S 2022 J. Appl. Phys. 132 224901
[38] Johnson S, Markwitz A, Rudolphi M, Baumann H, Oei S P, Teo K B K and Milne W I 2004 Appl. Phys. Lett. 85 3277
[39] Nagao M, Tamura Y, Matsukawa T, Kanemaru S, Itoh J and Tokunaga K 2002 J. Vac. Sci. Technol. B 20 2309
[40] Lenk C, Lenk S, Holz M, Guliyev E, Hofmann M, Ivanov T, Rangelow I W, Behzadirad M, Rishinaramangalam A K, Feezell D and Busani T 2018 J. Vac. Sci. Technol. B 36 06
[41] Lu X, Yang Q, Chen W, Xiao C and Hirose A 2006 J. Vac. Sci. Technol. B 24 2575
[42] Torresin O, Borz M, Mauchain J, Blum I, Kleshch V I, Obraztsov A N, Vella A and Chalopin B 2019 Ultramicroscopy 202 51
[43] Ramaneti R, Sankaran K J, Korneychuk S, Yeh C J, Degutis G, Leou K C, Verbeeck J, Van Bael M K, Lin I N and Haenen K 2017 APL Mater. 5 066102
[44] Chang T H, Kunuku S, Hong Y J, Leou K C, Yew T R, Tai N H and Lin I N 2014 ACS Appl. Mater. Interfaces 6 11589
[45] Lin W, Wang T T, Wang Q L, Lv X Y, Li G Z, Li L A, Ao J P and Zou G T 2022 Chin. Phys. B 31 108105
[46] Zhu Y, Lin W, Li D S, Li L A, Lv X Y, Wang Q L and Zou G T 2023 Chin. Phys. B 32 088101
[47] Koizumi S, Watanabe K, Hasegawa M and Kanda H 2001 Science 292 1899
[48] Takeuchi D, Makino T, Kato H, Hirabayashi I, Okushi H and Yamasaki S 2010 Physica Status Solidi A 207 2093
[49] Lin I N, Koizumi S, Yater J and Koeck F 2014 MRS Bull. 39 533
[50] Shimaoka T, Umezawa H, Ichikawa K, Pernot J and Koizumi S 2020 Appl. Phys. Lett. 117 103902
[51] Takeuchi D, Makino T, Ri S G, Tokuda N, Kato H, Ogura M, Okushi H and Yamasaki S 2008 Appl. Phys. Express 1 015004
[52] Kato H, Makino T, Yamasaki S and Okushi H 2007 J. Phys. D: Appl. Phys. 40 6189
[53] Makino T, Tokuda N, Kato H, Kanno S, Yamasaki S and Okushi H 2008 Physica Status Solidi A 205 2200
[54] Suzuki M, Sakai T, Makino T, Kato H, Takeuchi D, Ogura M, Okushi H and Yamasaki S 2013 Physica Status Solidi (a) 210 2035
[55] Makino T, Yoshino K, Sakai N, Uchida K, Koizumi S, Kato H, Takeuchi D, Ogura M, Oyama K, Matsumoto T, Okushi H and Yamasaki S 2011 Appl. Phys. Lett. 99 061110
[56] Makino T, Ri S G, Tokuda N, Kato H, Yamasaki S and Okushi H 2009 Diamond Relat. Mater. 18 764
[57] Malakoutian M, Benipal M, Koeck F A, Nemanich R J and Chowdhury S 2020 IEEE J. Electron Devices Soc. 8 614
[58] Lobaev M A, Radishev D B, Bogdanov S A, Vikharev A L, Gorbachev A M, Isaev V A, Kraev S A, Okhapkin A I, Arhipova E A, Drozdov M N and Shashkin V I 2020 Physica Status Solidi RRL 14 2000347
[59] Kato H, Ogura M, Makino T, Takeuchi D and Yamasaki S 2016 Appl. Phys. Lett. 109 142102
[60] Oyama K, Ri S G, Kato H, Ogura M, Makino T, Takeuchi D, Tokuda N, Okushi H and Yamasaki S 2009 Appl. Phys. Lett. 94 152109
[61] Kato H, Makino T, Ogura M, Tokuda N, Okushi H and Yamasaki S 2009 Appl. Phys. Express 2 055502
[62] Takeuchi D, Makino T, Kato H, Okushi H and Yamasaki S 2011 Physica Status Solidi (a) 208 2073
[63] Honbu T, Takeuchi D, Ichikawa K, Ohmagari S, Teraji T, Ogura M, Kato H, Makino T and Shoji I 2021 Diamond and Relat. Mater. 117 108463
[64] Koeck F A, Benipal M and Nemanich R J 2020 Diamond Relat. Mater. 101 107607
[65] Okushi H, Watanabe H, Yamasaki S and Kanno S 2006 Physica Status Solidi A 203 3226
[66] Hasan M M, Wang C, Pala N and Shur M 2024 Nanomaterials 14 460
[67] Takeuchi D, Koizumi S, Makino T, Kato H, Ogura M, Ohashi H, Okushi H and Yamasaki S 2013 Physica Status Solidi (a) 210 1961
[68] Takeuchi D, Makino T, Kato H, Ogura M, Tokuda N, Oyama K, Matsumoto T, Okushi H and Yamasaki S 2011 Diamond Relat. Mater. 20 917
[69] Trucchi D M and Melosh N A 2017 MRS Bulletin 42 488
[70] Harniman R, May P W and Fox O J L 2017 Diamond Relat. Mater. 80 147
[71] Yamada T, Masuzawa T, Mimura H and Okano K 2015 J. Phys. D: Appl. Phys. 49 045102
[72] Gan L, Cimmino A, Prawer S, Bolker A and Kalish R 2011 Diamond Relat. Mater. 20 1263
[73] Nebel C E, Yang N, Uetsuka H, Yamada T and Watanabe H 2008 J. Appl. Phys. 103 013712
[74] Yamada T, Nebel C E and Shikata S I 2009 Appl. Surf. Sci. 256 1006
[75] Subramanian K, Kang W, Davidson J, Choi B and Howell M 2006 Diamond Relat. Mater. 15 1994
[76] Yamada T, Hwang D S, Vinod P R, Makino T and Fujimori N 2005 Jpn. J. Appl. Phys. 44 L385
[77] Strobel P, Riedel M, Ristein J and Ley L 2004 Nature 430 439
[78] Takeuchi D, Makino T, Kato H, Ogura M, Tokuda N, Oyama K, Matsumoto T, Hirabayashi I, Okushi H and Yamasaki S 2010 Appl. Phys. Express 3 041301
[79] Zhang W, Guan L, Wang B, Liu H, Wang J, Hong X, Long J, Wei S, Xiong X and Xiong Y 2022 J. Alloys Compd. 928 167243
[80] Mendoza F, Makarov V, Weiner B R and Morell G 2015 Appl. Phys. Lett. 107 201605
[81] Nose K, Fujita R, Kamiko M and Mitsuda Y 2012 J. Vac. Sci. Technol. B 30 011204
[82] Lloret F, Sankaran K J, Millan-Barba J, Desta D, Rouzbahani R, Pobedinskas P, Gutierrez M, Boyen H G and Haenen K 2020 Nanomaterials 10 1024
[83] Wang Y, Yu S W, Xue Y P, Hei H J, Wu Y X and Shen Y Y 2021 Chin. Phys. B 30 068101
[84] Kozak H, Kromka A, Ukraintsev E, Houdkova J, Ledinsky M, Vaněček M and Rezek B 2009 Diamond Relat. Mater. 18 722
[85] Tiwari A K, Goss J, Briddon P, Wright N G, Horsfall A B, Jones R, Pinto H and Rayson M 2011 Phys. Rev. B 84 245305
[86] Zhu W, Kochanski G, Jin S and Seibles L 1995 J. Appl. Phys. 78 2707
[87] Yamada T, Sawabe A, Koizumi S, Itoh J and Okano K 2000 Appl. Phys. Lett. 76 1297
[88] Cuenca J A, Sankaran K J, Pobedinskas P, Panda K, Lin I N, Porch A, Haenen K and Williams O A 2019 Carbon 145 740
[89] Janssen W, Turner S, Sakr G, Jomard F, Barjon J, Degutis G, Lu Y G, D’Haen J, Hardy A and Bael M V 2014 Physica Status Solidi RRL 8 705
[90] Harniman R L, Fox O J, Janssen W, Drijkoningen S, Haenen K and May P W 2015 Carbon 94 386
[91] Deshmukh S, Sankaran K, Srinivasu K, Korneychuk S, Banerjee D, Barman A, Bhattacharya G, Phase D, Gupta M and Verbeeck J 2018 Diamond Relat. Mater. 83 118
[92] Sun T, Koeck F A M, Zhu C and Nemanich R J 2011 Appl. Phys. Lett. 99 202101
[93] Takeuchi D, Nebel C E and Yamasaki S 2006 Physica Status Solidi (a) 203 3100
[94] Takeuchi D, Nebel C E and Yamasaki S 2006 J Appl. Phys. 99 086102
[95] Cicala G, Magaletti V, Valentini A, Nitti M A, Bellucci A and Trucchi D M 2014 Appl. Surf. Sci. 320 798
[96] Zhu D, Zhang L, Ruther R E and Hamers R J 2013 Nat. Mater. 12 836
[97] Yoshikawa T, Asakawa H, Matsumoto T, Ichikawa K, Kaga A, Yamamoto S, Izumi R, Ohno M, Mahiko T and Mutsuda M 2024 Carbon 218 118689
[98] Jang D M, Myung Y, Im H S, Seo Y S, Cho Y J, Lee C W, Park J, Jee A Y and Lee M 2012 Chem. Commun. 48 696
[99] Zhu D, Zhang L, Ruther R E and Hamers R J 2013 Nat. Mater. 12 836
[100] Buchner F, Kirschbaum T, Venerosy A, Girard H, Arnault J C, Kiendl B, Krueger A, Larsson K, Bande A and Petit T 2022 Nanoscale 14 17188
[101] Nebel C E 2013 Nat. Mater. 12 780
[102] Hamers R, Bandy J, Zhu D and Zhang L 2014 Faraday Discuss. 172 397
[103] Li S, Bandy J A and Hamers R J 2018 ACS Applied Materials & Interfaces 10 5395
[104] Marchal C, Saoudi L, Girard H A, Keller V and Arnault J C 2023 Adv. Energy Sustainability Res. 5 2300260
[105] Wan G, Cattelan M, Croot A, Dominguez-Andrade H, Nicley S S, Haenen K and Fox N A 2021 Carbon 185 376
[106] Shefsiek P 2010 IEEE T Plasma Sci. 38 2041
[107] Bellucci A, Pede B, Mastellone M, Valentini V, Polini R and Trucchi D 2023 Ceram. Int. 49 24351
[108] Koeck F A M and Nemanich R J 2012 J. Appl. Phys. 112 113707
[109] Koeck F A M, Nemanich R J, Lazea A and Haenen K 2009 Diamond Relat. Mater. 18 789
[110] Kataoka M, Zhu C, Koeck F A M and Nemanich R J 2010 Diamond Relat. Mater. 19 110
[111] Kato H, Takeuchi D, Ogura M, Yamada T, Kataoka M, Kimura Y, Sobue S, Nebel C E and Yamasaki S 2016 Diamond Relat. Mater. 63 165
[112] Kataoka M, Morioka N, Kimura Y, Sobue S, Kato H, Takeuchi D and Yamasaki S 2016 Physica Status Solidi (a) 213 2650
[113] Koeck F A M, Nemanich R J, Balasubramaniam Y, Haenen K and Sharp J 2011 Diamond Relat. Mater. 20 1229
[114] Bellucci A, Pede B, Mastellone M, Valentini V, Polini R and Trucchi D M 2023 Ceram. Int. 49 24351
[115] Schwede J W, Bargatin I, Riley D C, Hardin B E, Rosenthal S J, Sun Y, Schmitt F, Pianetta P, Howe R T, Shen Z X and Melosh N A 2010 Nat. Mater. 9 762
[116] Schwede J W, Sarmiento T, Narasimhan V K, Rosenthal S J, Riley D C, Schmitt F, Bargatin I, Sahasrabuddhe K, Howe R T and Harris J S 2013 Nat. Commun. 4 1576
[117] Elfimchev S, Chandran M, Akhvlediani R and Hoffman A 2015 Physica Status Solidi (a) 212 2583
[118] Elfimchev S, Chandran M, Akhvlediani R and Hoffman A 2017 Appl. Surf. Sci. 410 414
[119] Sun T, Koeck F A M, Rezikyan A, Treacy M M J and Nemanich R J 2014 Phys. Rev. B 90 121302
[1] Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field
Wen-Tao Lu(卢文韬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Kang-Hao He(何康浩), Zeng-Bo Xu(许增博), Yi-Han Chen(陈艺涵), Yang Wang(汪洋), Shi-Yu Ge(葛仕宇),Si-Han An(安思瀚), Jian-Fei Wu(吴建飞), Yi-Han Ma(马艺菡), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(8): 080305.
[2] Synthesis and nitrogen content regulation of diamond in a high-pressure hydrogen-rich environment
Guofeng Huang(黄国锋), Liangchao Chen(陈良超), and Chao Fang(房超). Chin. Phys. B, 2024, 33(6): 068102.
[3] Effect of surface modification on the radiation stability of diamond ohmic contacts
Lian-Xi Mu(牟恋希), Shang-Man Zhao(赵上熳), Peng Wang(王鹏), Xiao-Lu Yuan(原晓芦), Jin-Long Liu(刘金龙), Zhi-Fu Zhu(朱志甫), Liang-Xian Chen(陈良贤), Jun-Jun Wei(魏俊俊), Xiao-Ping Ou-Yang(欧阳晓平), and Cheng-Ming Li(李成明). Chin. Phys. B, 2024, 33(2): 026801.
[4] Preparing highly entangled states of nanodiamond rotation and NV center spin
Wen-Liang Li(李文亮) and Duan-Lu Zhou(周端陆). Chin. Phys. B, 2024, 33(2): 020305.
[5] Design and simulation of an accelerometer based on NV center spin—strain coupling
Lu-Min Ji(季鲁敏), Li-Ye Zhao(赵立业), and Yu-Hai Wang(王裕海). Chin. Phys. B, 2024, 33(1): 017301.
[6] Observation of flat-band localized state in a one-dimensional diamond momentum lattice of ultracold atoms
Chao Zeng(曾超), Yue-Ran Shi(石悦然), Yi-Yi Mao(毛一屹), Fei-Fei Wu(武菲菲), Yan-Jun Xie(谢岩骏), Tao Yuan(苑涛), Han-Ning Dai(戴汉宁), and Yu-Ao Chen(陈宇翱). Chin. Phys. B, 2024, 33(1): 010303.
[7] Anti-Stokes/Stokes temperature calibration and its application in laser-heating diamond anvil cells
Minmin Zhao(赵旻旻), Binbin Wu(吴彬彬), Jingyi Liu(刘静仪), and Li Lei(雷力). Chin. Phys. B, 2023, 32(9): 090704.
[8] High performance trench diamond junction barrier Schottky diode with a sidewall-enhanced structure
Ying Zhu(朱盈), Wang Lin(林旺), Dong-Shuai Li(李东帅), Liu-An Li(李柳暗), Xian-Yi Lv(吕宪义), Qi-Liang Wang(王启亮), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2023, 32(8): 088101.
[9] Diamond/c-BN van der Waals heterostructure with modulated electronic structures
Su-Na Jia(贾素娜), Gao-Xian Li(李高贤), Nan Gao(高楠), Shao-Heng Cheng(成绍恒), and Hong-Dong Li(李红东). Chin. Phys. B, 2023, 32(7): 077301.
[10] Current sensor based on diamond nitrogen-vacancy color center
Zi-Yang Shi(史子阳), Wei Gao(高伟), Qi Wang(王启), Hao Guo(郭浩), Jun Tang(唐军), Zhong-Hao Li(李中豪), Huan-Fei Wen(温焕飞), Zong-Min Ma(马宗敏), and Jun Liu(刘俊). Chin. Phys. B, 2023, 32(7): 070704.
[11] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[12] Secondary electron emission and photoemission from a negative electron affinity semiconductor with large mean escape depth of excited electrons
Ai-Gen Xie(谢爱根), Hong-Jie Dong(董红杰), and Yi-Fan Liu(刘亦凡). Chin. Phys. B, 2023, 32(4): 048102.
[13] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[14] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[15] Diamond growth in a high temperature and high pressure Fe-Ni-C-Si system: Effect of synthesis pressure
Yang Liu(刘杨), Zhiwen Wang(王志文), Bowei Li(李博维), Hongyu Zhao(赵洪宇), Shengxue Wang(王胜学), Liangchao Chen(陈良超), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2023, 32(12): 128102.
[1] WANG JIAN (王坚), WU XING-FANG (吴杏芳), FANG ZHENG-ZHI (方正知). DIFFUSIVE AGGREGATION ON ION IMPLANTED THIN FILMS[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(2): 81 -85 .
[2] PENG WEN-JI (彭文基), LI QING-XING (李庆行), YU ZHEN-XIN (余振新), AN NING (安宁), XU MAI (徐迈). STUDIES ON THE DYNAMICS OF OPTICAL BISTABILITY SWITCHING IN THE INTERNAL FABRY-PEROT CAVITY WITH A CdSxSe1-x-DOPED GLASS CHANNEL WAVEGUIDE[J]. Acta Physica Sinica (Overseas Edition), 1992, 1(3): 183 -190 .
[3] PENG YU-FENG (彭玉峰), TANG JUN-XIONG (汤俊雄), WANG QING-JI (王庆吉). STUDY OF FARADAY ANOMALOUS DISPERSION SPECTRA OF THE HYPERFINE STRUCTURE OF Rb D2 LINES[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(1): 1 -8 .
[4] JIN JI-RONG (金继荣), JIN XIN (金新), JI HE-LIN (吉和林), ZHANG YI-TONG (张贻瞳), XU XIAO-NONG (徐小农), SHI ZHI-XIANG (施智祥), ZHANG ZHI-PING (张治平), YAO XI-XIAN (姚希贤), ZHUANG RUI-FANG (庄瑞芳), XIE HUI (谢晖). INVESTIGATION OF THE EFFECT OF SLOW NEUTRON IRRADIATION ON HALOGEN-DOPED HIGH-Tc SUPERCONDUCTORS AND ITS MECHANISM[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(1): 56 -64 .
[5] LIU JUN-MING (刘俊明), LIU ZHI-GUO (刘治国), WU ZHUANG-CHUN (吴状春). SCALING LAW FOR CBr4-C2Cl6 LAMELLAR EUTECTIC IN DIRECTIONAL SOLIDIFICATION[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(10): 782 -790 .
[6] HE YU-LIANG (何宇亮), LIU XIANG-NA (刘湘娜), YIN CHENG-ZHONG (殷晨钟), ZHANG YU (张昱). DEPOSITION OF HIGH QUALITY AMORPHOUS SILICON FILMS WITH STRONG HYDROGEN DILUTED SILANE AS REACTANT GAS SOURCE[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(11): 807 -815 .
[7] TANG GUI-DE (唐贵德), NIE XIANG-FU (聂向富), SUN HUI-YUAN (孙会元), MENG GUANG-QING (孟广庆), HAN BAO-SHAN (韩宝善). ANNIHILATION OF VERTICAL-BLOCH-LINE CHAINS IN THE WALLS OF THE SECOND KIND OF DUMBBELL DOMAINS SUBJECTED TO AN IN-PLANE FIELD[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(11): 863 -869 .
[8] ZHOU HAI-JUN (周海军), XU XIANG-YUAN (许祥源), HUANG WEN (黄雯), CHEN DIE-YAN (陈瓞延). NEW AUTOIONIZING STATES NEAR THE FIRST IONIZATION LIMIT OF RARE EARTH ELEMENT Dy[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(12): 917 -924 .
[9] NING XIAO-GUANG (宁小光), PAN JIN (潘进), HU KUI-YI (胡魁毅), YE HENG-QIANG (叶恒强). INVESTIGATIONS ABOUT THE DYNAMICAL ELECTRON SCATTERING BY A HEXAGON-PRISM $\beta$-Si3N4 WHISKER[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(2): 113 -119 .
[10] DUAN YI-WU (段宜武), BAO CHENG-GUANG (鲍诚光). ONE-BODY DENSITIES AND FEATURES OF THE STRUCTURE OF THE 2S+1Pe DOUBLY EXCITED HELIUM STATES[J]. Acta Physica Sinica (Overseas Edition), 1993, 2(3): 170 -179 .