| ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Color Fourier single-pixel imaging with random color filter array |
| Jialiang Chen(陈佳亮), Wei Zhu(朱维), Le Wang(王乐)†, and Shengmei Zhao(赵生妹) |
| School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China |
|
|
|
|
Abstract Color Fourier single-pixel imaging (FSI) enables efficient spectral and spatial imaging. Here, we propose a Fourier single-pixel imaging scheme with a random color filter array (FSI-RCFA). The proposed method employs a random color filter array (RCFA) to modulate Fourier patterns. A three-step phase-shifting technique reconstructs the Fourier spectrum, followed by an RCFA-based demosaicing algorithm to recover color images. Compared to traditional color FSI based on Bayer color filter array schemes (FSI-BCFA), our approach achieves superior separation between chrominance and luminance components in the frequency domain. Simulation results demonstrate that the FSI-RCFA method achieves a lower mean squared error (MSE), a higher peak signal-to-noise ratio (PSNR), and superior noise resistance compared to FSI-BCFA, while enabling direct single-channel pixel measurements for targeted applications such as agricultural defect detection.
|
Received: 22 March 2025
Revised: 13 July 2025
Accepted manuscript online: 19 July 2025
|
|
PACS:
|
42.30.Va
|
(Image forming and processing)
|
| |
42.30.Wb
|
(Image reconstruction; tomography)
|
|
| Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 62001249 and 62375140). |
Corresponding Authors:
Le Wang
E-mail: njwanglele@163.com
|
Cite this article:
Jialiang Chen(陈佳亮), Wei Zhu(朱维), Le Wang(王乐), and Shengmei Zhao(赵生妹) Color Fourier single-pixel imaging with random color filter array 2025 Chin. Phys. B 34 094210
|
[1] Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. Lett. 93 093602 [2] Sun B Q, Welsh S S, Edgar M P, Shapiro J H and Padgett M J 2012 Opt. Express 20 16892 [3] Li H G, Zhang D J, Xu D Q, Zhao Q L, Wang S, Wang H B, Xiong J and Wang K 2015 Phys. Rev. A 92 043816 [4] Welsh S S, Edgar M P, Bowman R, Jonathan P, Sun B Q and Padgett M J 2013 Opt. Express 21 23068 [5] Nakano A 2002 Cell Struct. Funct. 27 349 [6] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429 [7] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601 [8] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131101 [9] Bie S H, Wang C H, Lv R B, Bao Q Q, Fu Q, Meng S Y and Chen X H 2023 Chin. Phys. B 32 128702 [10] Zhao Y N, Hou H Y, Han J C, Cao D Z, Zhang S H, Liu H C and Liang B L 2023 Chin. Phys. B 32 064201 [11] Zhang Z B, Wang X Y, Zheng G A and Zhong J G 2017 Opt. Express 25 19619 [12] Liu Z D, Zhang X Q, Ding Y N, Li Z G and Li H G 2025 Opt. Express 33 5684 [13] Wang Z H,Wen Y A, Ma Y, Tian Y L, Cui Y Z, PengW,Wang F F and Lu Y 2024 Opt. Express 32 41255 [14] Wang L and Zhao S M 2016 Photon. Res. 4 240 [15] Xu Z H, ChenW, Penuelas J, PadgettMand SunMJ 2018 Opt. Express 26 2427 [16] Shao H, Huang H, Wei Y X, Zhang H J, Yang Z H and Yu Y J 2024 Chin. Phys. Lett. 41 124202 [17] Radwell N, Mitchell K J, Gibson G M, Edgar M P, Bowman R and Padgett M J 2014 Optica 1 285 [18] Wang Y W, Suo J L, Fan J T and Dai Q H 2015 IEEE Photon. Technol. Lett. 28 288 [19] Zhao Y N, Hou H Y, Han J C, Liu H C, Zhang S H, Cao D Z and Liang B L 2021 Opt. Lett. 46 4900 [20] Ji P C, Wu Q F, Shi Y Y, Yang Z H and Yu Y J 2024 Opt. Express 32 45635 [21] Wang L and Zhao S M 2021 Opt. Express 29 24486 [22] Cao D Z, Xu B L, Zhang S H and Wang K G 2015 Chin. Phys. Lett. 32 114208 [23] Duan D Y, Zhu R and Xia Y J 2021 Opt. Lett. 46 4172 [24] Wei Y, Shi Y Y, Zhang M L, Zhang D J and Liu Y W 2025 Opt. Laser Technol. 181 111875 [25] Jiang X Y, Li Z W, Du G, Jia J L, Wang Q H, Chi N and Dai Q H 2022 Opt. Express 30 25995 [26] Sun Y S, Jian H, Shi D F, Zha L B, Guo Z J, Yuan K, Hu S X andWang Y J 2022 Opt. Express 30 31728 [27] Xie J T, Tan J H, Bie S H, Li M F, Chen L M and Wu L A 2024 Opt. Lett. 49 4162 [28] Li T X, Chen Y, Wang H, Liu S, Zhang L and Li Z 2019 Opt. Express 27 23138 [29] Zhang Z B, Wang X, Zheng G B, Li D H and Zhai G J 2017 Sci. Rep. 7 12029 [30] Zhang Z B, Liu S L, Peng J Z, Yao M H, Zheng G A and Zhong J G 2018 Optica 5 315 [31] Bayer B 1976 U.S. Patent 3971065 [1976] [32] Condat L 2009 Proc. 16th IEEE International Conference on Image Processing (ICIP), November 7-10, 2009, Cairo, Egypt, p. 1625 [33] Sibson R 1981 A Brief Description of Natural Neighbour Interpolation in Interpreting Multivariate Data, p. 21 [34] Gunturk B K, Glotzbach J, Altunbasak Y, Schafer R W and Mersereau R M 2005 IEEE Signal Processing Magazine 22 p. 44 [35] Malvar H S, He L W and Cutler R 2004 Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE) 3 p. 485 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|