Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(11): 114202    DOI: 10.1088/1674-1056/ac7e33
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Full color ghost imaging by using both time and code division multiplexing technologies

Le Wang(王乐)1,†, Hui Guo(郭辉)1,2, and Shengmei Zhao(赵生妹)1,‡
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications(NUPT), Nanjing 210003, China;
2 College of Information Engineering, Fuyang Normal University, Fuyang 236037, China
Abstract  We propose a new full color ghost imaging scheme using both time and code division multiplexing technologies. In the scheme, the speckle patterns of three colors (red, green and blue) are modulated with different time slots and codes. The light intensity is sampled by one bucket detector. Then based on the modulated time slots and codes, we can effectively and simultaneously extract three detection component signals corresponding to three color components of objects from the sampling signal of the bucket detector. Finally, three component images resulting from the three component detection signals can be synthesized into a full color image. The experimental results verify the feasibility of our scheme under the limit of the number of time slots and codes. Moreover, our scheme reduces the number of bucket detectors and can realize high quality imaging even in a noisy environment.
Keywords:  ghost imaging      time division multiplexing      code division multiplexing      full color imaging  
Received:  20 April 2022      Revised:  27 June 2022      Accepted manuscript online:  05 July 2022
PACS:  42.30.Va (Image forming and processing)  
  42.30.Wb (Image reconstruction; tomography)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 62001249 and 61871234), the NUPTSF (Grant No. NY220004), and the Scientific Research Project of College of Information Engineering, Fuyang Normal University (Grant No. FXG2021ZZ02).
Corresponding Authors:  Le Wang, Shengmei Zhao     E-mail:  njwanglele@163.com;zhaosm@njupt.edu.cn

Cite this article: 

Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹) Full color ghost imaging by using both time and code division multiplexing technologies 2022 Chin. Phys. B 31 114202

[1] Strekalov D V, Sergienko A V, Klyshko D N and Shih Y H 1995 Phys. Rev. Lett. 74 3600
[2] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[3] Shapiro J H 2008 Phys. Rev. A 78 061802(R)
[4] Xu Z H, Chen W, Penuelas J, Padgett M J and Sun M J 2018 Opt. Express 26 2427
[5] Wang L and Zhao S 2016 Photon. Res. 4 240
[6] Deng C, Gong W and Han S 2016 Opt. Express 24 25983
[7] Fu Q, Bai Y, Huang X, Nan S, Xie P and Fu X 2019 Photon. Res. 7 1468
[8] Yin M Q, Wang L and Zhao S M 2019 Chin. Phys. B 28 094201
[9] Wang L and Zhao S M 2020 Chin. Phys. B 29 024204
[10] Wang L, Zou L and Zhao S 2018 Opt. Commun. 407 181
[11] Gong W and Han S 2012 Phys. Lett. A 376 1519
[12] Wang L and Zhao S 2021 Opt. Laser. Eng. 139 106473
[13] Jiao S, Feng J, Gao Y, Lei T and Yuan X 2020 Opt. Express 28 7301
[14] Sun S, Gu J H, Lin H Z, Jiang L and Liu W T 2019 Opt. Lett. 44 5594
[15] Zhou C, Wang G, Huang H, Song L and Xue K 2019 Opt. Express 27 27295
[16] Li H X, Bai Y F, Shi X H, Nan S Q, Qu L J, Shen Q and Fu X Q 2017 Chin. Phys. B 26 104204
[17] Welsh S S, Edgar M P, Bowman R, Jonathan P, Sun B and Padgett M J 2013 Opt. Express 21 23068
[18] Cao D Z, Xu B L, Zhang S H and Wang K G 2015 Chin. Phys. Lett. 32 114208
[19] Liu B L, Yang Z H, Liu X and Wu L A 2017 J. Mod. Opt. 64 259
[20] Yu W K, Yao X R, Liu X F, Li L Z and Zhai G J 2015 Appl. Opt. 54 363
[21] Ye Z, Xiong J and Liu H C 2021 Phys. Rev. Appl. 15 034035
[22] Salvador-Balaguer E, Clemente P, Tajahuerce E, Pla F and Lancis J 2016 J. Disp. Technol. 12 417
[23] Qiu Z, Zhang Z and Zhong J 2020 Opt. Lett. 45 3046
[24] Duan D, Zhu R and Xia Y 2021 Opt. Lett. 46 4172
[25] Zhao Y N, Hou H Y, Han J C, Liu H C, Zhang S H, Cao D Z and Liang B L 2021 Opt. Lett. 46 4900
[26] Torii T, Haruse Y, Sugimoto S and Kasaba Y 2021 Opt. Express 29 12081
[27] Wang L and Zhao S 2021 Opt. Express 29 24486
[28] Goldsmith A 2005 Wireless Communications (Cambridge: Cambridge University Press)
[29] Liu J, Wang L and Zhao S 2021 Opt. Express 29 41485
[30] Moreira A J C, Valadas R T and de Oliveira Duarte A M 1997 Wireless Networks 3 131
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[3] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[4] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[5] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[6] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[7] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[8] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[9] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[10] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[11] Light slowing and all-optical time division multiplexing of hybrid four-wave mixing signal in nitrogen-vacancy center
Ruimin Wang(王瑞敏), Irfan Ahmed, Faizan Raza, Changbiao Li(李昌彪), Yanpeng Zhang(张彦鹏). Chin. Phys. B, 2020, 29(5): 054204.
[12] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[13] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[14] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
[15] Mask-based denoising scheme for ghost imaging
Yang Zhou(周阳), Shu-Xu Guo(郭树旭), Fei Zhong(钟菲), Tian Zhang(张天). Chin. Phys. B, 2019, 28(8): 084204.
No Suggested Reading articles found!