Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 084201    DOI: 10.1088/1674-1056/ac6498
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging

Hui Guo(郭辉)1,2, Le Wang(王乐)1, and Sheng-Mei Zhao(赵生妹)1,†
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 College of Information Engineering, Fuyang Normal University, Fuyang 236037, China
Abstract  We propose a method for imaging a periodic moving/state-changed object based on computational ghost imaging with Hadamard speckle patterns and a slow bucket detector, named as PO-HCGI. In the scheme, speckle patterns are produced from a part of each row of a Hadamard matrix. Then, in each cycle, multiple speckle patterns are projected onto the periodic moving/state-changed object, and a bucket detector with a slow sampling rate records the total intensities reflected from the object as one measurement. With a series of measurements, the frames of the moving/state-changed object can be obtained directly by the second-order correlation function based on the Hadamard matrix and the corresponding bucket detector measurement results. The experimental and simulation results demonstrate the validity of the PO-HCGI. To the best of our knowledge, PO-HCGI is the first scheme that can image a fast periodic moving/state-changed object by computational ghost imaging with a slow bucket detector.
Keywords:  ghost imaging      periodic moving object      periodic state-changed object      Hadamard matrix  
Received:  26 January 2022      Revised:  18 March 2022      Accepted manuscript online:  06 April 2022
PACS:  42.30.Va (Image forming and processing)  
  42.30.-d (Imaging and optical processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871234 and 62001249), the University Talent Project of Anhui Province, China (Grant No. gxyq2020102), and the Scientific Research Project of College of Information Engineering, Fuyang Normal University (Grant No. FXG2021ZZ02).
Corresponding Authors:  Sheng-Mei Zhao     E-mail:  zhaosm@njupt.edu.cn

Cite this article: 

Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹) Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging 2022 Chin. Phys. B 31 084201

[1] Huang H, Zhou C, Gong W and Song L 2019 Opt. Express 27 38624
[2] He Y, Wang G, Dong G, Zhu S, Chen H, Zhang A and Xu Z 2018 Sci. Rep. 8 6469
[3] He X, Zhao S M and Wang L 2021 Chin. Phys. B 30 054201
[4] Wang G, Zheng H, Tang Z, He Y, Zhou Y, Chen H, Liu J, Yuan Y, Li F and Xu Z 2020 Chin. Opt. Lett. 18 091101
[5] Strekalov D V, Sergienko A V, Klyshko D N and Shih Y H 1995 Phys. Rev. Lett. 74 3600
[6] Li Y X, Yu W K, Leng J and Wang S F 2019 Opt. Express 27 35166
[7] Cao D Z, Li Q C, Zhuang X C, Ren C, Zhang S H and Song X B 2018 Chin. Phys. B 27 123401
[8] Shapiro J H 2008 Phys. Rev. A 78 061802
[9] Bromberg Y, Katz O and Silberberg Y 2009 Phys. Rev. A 79 053840
[10] Jiao S, Feng J, Gao Y, Lei T and Yuan X 2020 Opt. Express 28 7301
[11] Chen W and Chen X 2015 Opt. Lasers Eng. 73 123
[12] Zhao S M and Zhuang P 2014 Chin. Phys. B 23 054203
[13] Xiao Y, Zhou L and Chen W 2019 Opt. Express 27 20558
[14] Yin M Q, Wang L and Zhao S M 2019 Chin. Phys. B 28 094201
[15] Zhang A X, He Y H, Wu L A, Chen L M and Wang B B 2018 Optica 5 374
[16] Duan D, Zhu R and Xia Y 2021 Opt. Lett. 46 4172
[17] Li H, Xiong J and Zeng G 2011 Opt. Eng. 50 127005
[18] Zhang C, Gong W and Han S 2013 Appl. Phys. Lett. 102 021111
[19] Li E, Bo Z, Chen M, Gong W and Han S 2014 Appl. Phys. Lett. 104 251120
[20] Li X, Deng C, Chen M, Gong W and Han S 2015 Photon. Res. 3 153
[21] Yu W K, Yao X R, Liu X F, Li L Z and Zhai G J 2015 Appl. Opt. 54 4249
[22] Sun S, Gu J H, Lin H Z, Jiang L and Liu W T 2019 Opt. Lett. 44 5594
[23] Jiao S, Sun M, Gao Y, Lei T, Xie Z and Yuan X 2019 Opt. Express 27 12841
[24] Jiang W, Li X, Peng X and Sun B 2020 Opt. Express 28 7889
[25] Xu Z H, Chen W, Penuelas J, Padgett M and Sun M J 2018 Opt. Express 26 2427
[26] Zhao W, Chen H, Yuan Y, Zheng H, Liu J, Xu Z and Zhou Y 2019 Phys. Rev. Applied 12 034049
[27] Wang L and Zhao S 2016 Photon. Res. 4 240
[28] Zhou C, Zhao X, Huang H, Wang G, Wang X, Song L and Xue K 2020 Appl. Phys. B 126 163
[29] Sun M J, Meng L T, Edgar M P, Padgett M J and Radwell N 2017 Sci. Rep. 7 3464
[30] Wang L and Zhao S 2020 Chin. Phys. B 29 024204
[1] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[2] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[3] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[4] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[5] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[6] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[7] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[8] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[9] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[10] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[11] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[12] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
[13] Experimental demonstration of influence of underwater turbulence on ghost imaging
Man-Qian Yin(殷曼倩), Le Wang(王乐), Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2019, 28(9): 094201.
[14] Mask-based denoising scheme for ghost imaging
Yang Zhou(周阳), Shu-Xu Guo(郭树旭), Fei Zhong(钟菲), Tian Zhang(张天). Chin. Phys. B, 2019, 28(8): 084204.
[15] Enhancement of spatial resolution of ghost imaging via localizing and thresholding
Yunlong Wang(王云龙), Yingnan Zhou(周英男), Shaoxiong Wang(王少雄), Feiran Wang(王斐然), Ruifeng Liu(刘瑞丰), Hong Gao(高宏), Pei Zhang(张沛), Fuli Li(李福利). Chin. Phys. B, 2019, 28(4): 044202.
No Suggested Reading articles found!