Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 094210    DOI: 10.1088/1674-1056/adf1e9
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Color Fourier single-pixel imaging with random color filter array

Jialiang Chen(陈佳亮), Wei Zhu(朱维), Le Wang(王乐)†, and Shengmei Zhao(赵生妹)
School of Communications and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Color Fourier single-pixel imaging (FSI) enables efficient spectral and spatial imaging. Here, we propose a Fourier single-pixel imaging scheme with a random color filter array (FSI-RCFA). The proposed method employs a random color filter array (RCFA) to modulate Fourier patterns. A three-step phase-shifting technique reconstructs the Fourier spectrum, followed by an RCFA-based demosaicing algorithm to recover color images. Compared to traditional color FSI based on Bayer color filter array schemes (FSI-BCFA), our approach achieves superior separation between chrominance and luminance components in the frequency domain. Simulation results demonstrate that the FSI-RCFA method achieves a lower mean squared error (MSE), a higher peak signal-to-noise ratio (PSNR), and superior noise resistance compared to FSI-BCFA, while enabling direct single-channel pixel measurements for targeted applications such as agricultural defect detection.
Keywords:  color single-pixel imaging      Fourier single-pixel imaging      random color filter array      demosaicing algorithm      noise resistance  
Received:  22 March 2025      Revised:  13 July 2025      Accepted manuscript online:  19 July 2025
PACS:  42.30.Va (Image forming and processing)  
  42.30.Wb (Image reconstruction; tomography)  
Fund: This project was supported by the National Natural Science Foundation of China (Grant Nos. 62001249 and 62375140).
Corresponding Authors:  Le Wang     E-mail:  njwanglele@163.com

Cite this article: 

Jialiang Chen(陈佳亮), Wei Zhu(朱维), Le Wang(王乐), and Shengmei Zhao(赵生妹) Color Fourier single-pixel imaging with random color filter array 2025 Chin. Phys. B 34 094210

[1] Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. Lett. 93 093602
[2] Sun B Q, Welsh S S, Edgar M P, Shapiro J H and Padgett M J 2012 Opt. Express 20 16892
[3] Li H G, Zhang D J, Xu D Q, Zhao Q L, Wang S, Wang H B, Xiong J and Wang K 2015 Phys. Rev. A 92 043816
[4] Welsh S S, Edgar M P, Bowman R, Jonathan P, Sun B Q and Padgett M J 2013 Opt. Express 21 23068
[5] Nakano A 2002 Cell Struct. Funct. 27 349
[6] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429
[7] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[8] Katz O, Bromberg Y and Silberberg Y 2009 Appl. Phys. Lett. 95 131101
[9] Bie S H, Wang C H, Lv R B, Bao Q Q, Fu Q, Meng S Y and Chen X H 2023 Chin. Phys. B 32 128702
[10] Zhao Y N, Hou H Y, Han J C, Cao D Z, Zhang S H, Liu H C and Liang B L 2023 Chin. Phys. B 32 064201
[11] Zhang Z B, Wang X Y, Zheng G A and Zhong J G 2017 Opt. Express 25 19619
[12] Liu Z D, Zhang X Q, Ding Y N, Li Z G and Li H G 2025 Opt. Express 33 5684
[13] Wang Z H,Wen Y A, Ma Y, Tian Y L, Cui Y Z, PengW,Wang F F and Lu Y 2024 Opt. Express 32 41255
[14] Wang L and Zhao S M 2016 Photon. Res. 4 240
[15] Xu Z H, ChenW, Penuelas J, PadgettMand SunMJ 2018 Opt. Express 26 2427
[16] Shao H, Huang H, Wei Y X, Zhang H J, Yang Z H and Yu Y J 2024 Chin. Phys. Lett. 41 124202
[17] Radwell N, Mitchell K J, Gibson G M, Edgar M P, Bowman R and Padgett M J 2014 Optica 1 285
[18] Wang Y W, Suo J L, Fan J T and Dai Q H 2015 IEEE Photon. Technol. Lett. 28 288
[19] Zhao Y N, Hou H Y, Han J C, Liu H C, Zhang S H, Cao D Z and Liang B L 2021 Opt. Lett. 46 4900
[20] Ji P C, Wu Q F, Shi Y Y, Yang Z H and Yu Y J 2024 Opt. Express 32 45635
[21] Wang L and Zhao S M 2021 Opt. Express 29 24486
[22] Cao D Z, Xu B L, Zhang S H and Wang K G 2015 Chin. Phys. Lett. 32 114208
[23] Duan D Y, Zhu R and Xia Y J 2021 Opt. Lett. 46 4172
[24] Wei Y, Shi Y Y, Zhang M L, Zhang D J and Liu Y W 2025 Opt. Laser Technol. 181 111875
[25] Jiang X Y, Li Z W, Du G, Jia J L, Wang Q H, Chi N and Dai Q H 2022 Opt. Express 30 25995
[26] Sun Y S, Jian H, Shi D F, Zha L B, Guo Z J, Yuan K, Hu S X andWang Y J 2022 Opt. Express 30 31728
[27] Xie J T, Tan J H, Bie S H, Li M F, Chen L M and Wu L A 2024 Opt. Lett. 49 4162
[28] Li T X, Chen Y, Wang H, Liu S, Zhang L and Li Z 2019 Opt. Express 27 23138
[29] Zhang Z B, Wang X, Zheng G B, Li D H and Zhai G J 2017 Sci. Rep. 7 12029
[30] Zhang Z B, Liu S L, Peng J Z, Yao M H, Zheng G A and Zhong J G 2018 Optica 5 315
[31] Bayer B 1976 U.S. Patent 3971065 [1976]
[32] Condat L 2009 Proc. 16th IEEE International Conference on Image Processing (ICIP), November 7-10, 2009, Cairo, Egypt, p. 1625
[33] Sibson R 1981 A Brief Description of Natural Neighbour Interpolation in Interpreting Multivariate Data, p. 21
[34] Gunturk B K, Glotzbach J, Altunbasak Y, Schafer R W and Mersereau R M 2005 IEEE Signal Processing Magazine 22 p. 44
[35] Malvar H S, He L W and Cutler R 2004 Proceedings of the 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing (IEEE) 3 p. 485
[1] Making the link between ADF and 4D STEM: Resolution, transfer and coherence
Peter D. Nellist and Timothy J. Pennycook. Chin. Phys. B, 2024, 33(11): 116803.
[2] Computational temporal ghost imaging based on complementary modulation
Jia-Wei Li(李佳炜), Wei Zhang(张伟), Xue-Feng Liu(刘雪峰), and Xu-Ri Yao(姚旭日). Chin. Phys. B, 2024, 33(11): 114201.
[3] Image encryption algorithm based on multiple chaotic systems and improved Joseph block scrambling
Dingkang Mou(牟定康) and Yumin Dong(董玉民). Chin. Phys. B, 2024, 33(10): 104205.
[4] Single exposure passive three-dimensional information reconstruction based on an ordinary imaging system
Shen-Cheng Dou(窦申成), Fan Liu(刘璠), Hu Li(李虎), Xu-Ri Yao(姚旭日), Xue-Feng Liu(刘雪峰), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2023, 32(11): 114204.
[5] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[6] Defogging computational ghost imaging via eliminating photon number fluctuation and a cycle generative adversarial network
Yuge Li(李玉格) and Deyang Duan(段德洋). Chin. Phys. B, 2023, 32(10): 104203.
[7] Optical encryption scheme based on spread spectrum ghost imaging
Jin-Fen Liu(刘进芬), Yue Dong(董玥), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(7): 074202.
[8] Micro sliding friction model considering periodic variation stress distribution of contact surface and experimental verification
Sheng-Hao Lu(卢晟昊), Jing-Yu Han(韩靖宇), and Shao-Ze Yan(阎绍泽). Chin. Phys. B, 2023, 32(4): 044602.
[9] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[10] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[11] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[12] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[13] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[14] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[15] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
No Suggested Reading articles found!