Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 114201    DOI: 10.1088/1674-1056/ad74e8
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Computational temporal ghost imaging based on complementary modulation

Jia-Wei Li(李佳炜)1, Wei Zhang(张伟)1, Xue-Feng Liu(刘雪峰)2,3,†, and Xu-Ri Yao(姚旭日)1‡
1 Center for Quantum Technology Research and Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements (MOE) School of Physics, Beijing Institute of Technology, Beijing 100081, China;
2 Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We report an experimental demonstration of temporal ghost imaging in which a digital micromirror device (DMD) and +1/-1 binary modulation have been combined to give an accurate reconstruction of a nonperiodic time object. Compared to the $0/1$ modulation, the reconstruction signal can be improved greatly by +1/-1 binary modulation even with half of the measurements. Experimental results show that 0/1 binary temporal objects up to 4 kHz and sinusoidal time objects up to 1 kHz can be reconstructed by this method. The influences of modulation speed and array detector gray levels are also discussed.
Keywords:  temporal ghost imaging      complementary modulation  
Received:  10 July 2024      Revised:  21 August 2024      Accepted manuscript online:  29 August 2024
PACS:  42.30.Va (Image forming and processing)  
  42.30.Ms (Speckle and moiré patterns)  
Fund: Project supported by Beijing Institute of Technology Research Fund Program for Young Scholars (Grant No. 202122012).
Corresponding Authors:  Xue-Feng Liu, Xu-Ri Yao     E-mail:  liuxuefeng@nssc.ac.cn;yaoxuri@bit.edu.cn

Cite this article: 

Jia-Wei Li(李佳炜), Wei Zhang(张伟), Xue-Feng Liu(刘雪峰), and Xu-Ri Yao(姚旭日) Computational temporal ghost imaging based on complementary modulation 2024 Chin. Phys. B 33 114201

[1] Todd B P, Shih Y H, Dmitry V S and Alexander V S 1995 Phys. Rev. A 52 R3429(R)
[2] Gatti A, Brambilla E, Bache M and Lugiato L A 2004 Phys. Rev. Lett. 93 093602
[3] Valencia A, Scarcelli G, Mil D A and Shih Y H 2005 Phys. Rev. Lett. 94 063601
[4] Zhang M H, Wei Q, Shen X, Liu Y F, Liu H L, Cheng J and Han S S 2007 Phys. Rev. A 75 021803(R)
[5] Liu X F, Chen X H, Yao X R, Yu W K, Zhai G J and Wu L A 2014 Opt. Lett. 39 2314
[6] Cheng J 2009 Opt. Express 17 7916
[7] Meyers R E, Deacon K S and Shih Y H 2011 Appl. Phys. Lett. 98 111115
[8] Basano L and Ottonello P 2006 Appl. Phys. Lett. 89 091109
[9] Liu H L and Han S S 2008 Opt. Lett. 33 824
[10] Deng C J, Gong W L and Han S S 2016 Opt. Express 24 25983
[11] Chen X H, Kong F H, Fu Q, Meng S Y and Wu L A 2017 Opt. Lett. 42 5290
[12] Zhang A X, He Y H, Wu L A, Chen L M and Wang B B 2018 Optica 5 374
[13] Juan S T G, Luana O, Luke P, Vittorio C, Antonio C, Jacob T, Robyn T, Alessia P and Marco P 2020 Optica 7 186
[14] Li M Q, Lan R M, Liu X F, Yao X R and Zhai G J 2020 Appl. Phys. Lett. 117 084102
[15] Tomohiro S, Tero S and Ari T F 2010 J. Opt. Soc. Am. B 27 2549
[16] Cho K and Noh J 2012 Opt. Commun. 285 1275
[17] Ryczkowski P, Margaux B, Friberg A T, Dudley J M and Genty G 2015 Nat. Photon. 10 167
[18] Xu Y K, Sun S H, Liu W T, Tang G Z, Liu J Y and Chen P X 2018 Opt. Express 26 99
[19] Meng W W, Shi D F, Yuan K, Zha L B, Huang J, Wang Y J and Fan C Y 2020 Opt. Lasers Eng. 134 106294
[20] Huang H H, Hu C Y, Yang S G, Chen M H and Chen H W 2020 IEEE Photon. J. 12 1
[21] Wu H, Ryczkowski P, Friberg A T, Dudley J M and Genty G 2019 Optica 6 902
[22] Jin M Y, Qian Z Y, Chen X W, Cui X G, Jiang K, Sun X J, Li D and Tian P F 2021 Chin. Opt. Lett. 19 110602
[23] Chen X H, Jin M Y, Fu Q, Chen H L, Wang Y P, Qiu P J, Cui X G, Sun B Q and Tian P F 2021 Opt. Lett. 46 1938
[24] Wang Y P, Jiang W J, Chen H l, Chen X W, Gao Y, Tian, P F and Sun B Q 2022 J. Light Technol. 40 5426
[25] Fabrice D, Paul A M, Séverine D and Eric L 2016 Optica 3 698
[26] Yu W K, liu X F, Yao X R, Wang C, Zhai Y and Zhai G J 2014 Sci. Rep. 4 5834
[27] Candes E J and Wakin M B 2008 IEEE Signal Process. Mag. 25 21
[28] Donoho D 2006 IEEE Trans. Inform. Theory 52 1289
[29] Li C B 2011 An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing (MS thesis) (Houston: Rice University)
[1] Making the link between ADF and 4D STEM: Resolution, transfer and coherence
Peter D. Nellist and Timothy J. Pennycook. Chin. Phys. B, 2024, 33(11): 116803.
[2] Image encryption algorithm based on multiple chaotic systems and improved Joseph block scrambling
Dingkang Mou(牟定康) and Yumin Dong(董玉民). Chin. Phys. B, 2024, 33(10): 104205.
[3] Single exposure passive three-dimensional information reconstruction based on an ordinary imaging system
Shen-Cheng Dou(窦申成), Fan Liu(刘璠), Hu Li(李虎), Xu-Ri Yao(姚旭日), Xue-Feng Liu(刘雪峰), and Guang-Jie Zhai(翟光杰). Chin. Phys. B, 2023, 32(11): 114204.
[4] Optical image encryption algorithm based on a new four-dimensional memristive hyperchaotic system and compressed sensing
Yang Du(都洋), Guoqiang Long(隆国强), Donghua Jiang(蒋东华), Xiuli Chai(柴秀丽), and Junhe Han(韩俊鹤). Chin. Phys. B, 2023, 32(11): 114203.
[5] Defogging computational ghost imaging via eliminating photon number fluctuation and a cycle generative adversarial network
Yuge Li(李玉格) and Deyang Duan(段德洋). Chin. Phys. B, 2023, 32(10): 104203.
[6] Optical encryption scheme based on spread spectrum ghost imaging
Jin-Fen Liu(刘进芬), Yue Dong(董玥), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(7): 074202.
[7] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[8] Micro sliding friction model considering periodic variation stress distribution of contact surface and experimental verification
Sheng-Hao Lu(卢晟昊), Jing-Yu Han(韩靖宇), and Shao-Ze Yan(阎绍泽). Chin. Phys. B, 2023, 32(4): 044602.
[9] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[10] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[11] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[12] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[13] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[14] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[15] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
No Suggested Reading articles found!