INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging |
Li-Ming Zhao(赵立明)1, Tian-Xiang Wang(王天祥)1, Run-Kang Ma(马润康)1, Yao Gu(顾瑶)1, Meng-Si Luo(罗梦丝)1, Heng Chen(陈恒)1, Zhi-Li Wang(王志立)1,†, and Xin Ge(葛昕)2 |
1 Department of Optical Engineering, School of Physics, Hefei University of Technology, Anhui 230009, China; 2 Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518067, China |
|
|
Abstract X-ray analyzer-based imaging (ABI) is a powerful phase-sensitive technique that can provide a wide dynamic range of density and extract useful physical properties of the sample. It derives contrast from x-ray absorption, refraction, and scattering properties of the investigated sample. However, x-ray ABI setups can be susceptible to external vibrations, and mechanical imprecisions of system components, e.g., the precision of motor, which are unavoidable in practical experiments. Those factors will provoke deviations of analyzer angular positions and hence errors in the acquired image data. Consequently, those errors will introduce artefacts in the retrieved refraction and scattering images. These artefacts are disadvantageous for further image interpretation and tomographic reconstruction. For this purpose, this work aims to analyze image artefacts resulting from deviations of analyzer angular positions. Analytical expressions of the refraction and scattering image artefacts are derived theoretically and validated by synchrotron radiation experiments. The results show that for the refraction image, the artefact is independent of the sample's absorption and scattering signals. By contrast, artefact of the scattering image is dependent on both the sample's refraction and scattering signals, but not on absorption signal. Furthermore, the effect of deviations of analyzer angular positions on the accuracy of the retrieved images is investigated, which can be of use for optimization of data acquisition. This work offers the possibility to develop advanced multi-contrast image retrieval algorithms that suppress artefacts in the retrieved refraction and scattering images in x-ray analyzer-based imaging.
|
Received: 21 January 2022
Revised: 06 April 2022
Accepted manuscript online: 20 April 2022
|
PACS:
|
87.59.-e
|
(X-ray imaging)
|
|
42.30.Va
|
(Image forming and processing)
|
|
87.57.N-
|
(Image analysis)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1532113, 11475170, and 11905041), the Fundamental Research Funds for the Central Universities (Grant No. PA2020GDKC0024), and Anhui Provincial Natural Science Foundation, China (Grant No. 2208085MA18). |
Corresponding Authors:
Zhi-Li Wang
E-mail: dywangzl@hfut.edu.cn
|
Cite this article:
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕) Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging 2023 Chin. Phys. B 32 028701
|
[1] Momose A and Fukuda J 1995 Med. Phys. 22 375 [2] Momose A, Yoneyama A and Hirano K 1997 J. Synchrotron Radiat. 4 311 [3] Davis T J, Gureyev T E, Stevenson A W, Wilkins S W and Gao D 1995 Nature 373 595 [4] Ingal V N and Beliaevskaya E A 1995 J. Phys. D 28 2314 [5] Chapman D, Thomlinson W, Johnston R E, Washburn D, Pisano E, Gmür N, Zhong Z, Menk R, Arfelli F and Sayers D 1997 Phys. Med. Biol. 42 2015 [6] Chen H, Liu B, Zhao L M, Ren K and Wang Z L 2021 Chin. Phys. B 30 18701 [7] Burvall A, Lundström U, Takman P, Larsson D H and Hertz H M 2011 Opt. Express 19 10359 [8] Weitkamp T, Diaz A, David C, Pfeiffer F and Ziegler E 2005 Opt. Express 13 6296 [9] Pfeiffer F, Weitkamp T, Bunk O and David C 2006 Nat. Phys. 2 258 [10] Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, BroNnimann C, Grünzweig C and David C 2008 Nat. Mater. 7 134 [11] Yashiro W, Terui Y, Kawabata K and Momose A 2010 Opt. Express 18 16890 [12] Ge X, Wang Z L, Gao K, Zhang K, Hong Y L, Wang D J, Zhu Z Z, Zhu P P and Wu Z Y 2011 Anal. Bioanal. Chem. 401 865 [13] Wang Z L, Gao K, Chen J, Ge X, Zhu P P, Tian Y C and Wu Z Y 2012 Chin. Phys. B 21 118703 [14] Wang Z L, Gao K, Ge X, Wu Z, Chen H, Wang S H, Zhu P P, Yuan Q X, Huang W X, Zhang K and Wu Z Y 2013 J. Phys. D 46 494003 [15] Olivo A, Arfelli F, Cantatore G, Longo R, Menk R H, Pani S, Prest M, Poropat P, Rigon L and Tromba G 2001 Med. Phys. 28 1610 [16] Diemoz P C, Bravin A, Sztrókay-Gaul A, Ruat M, Grandl S, Mayr D, Auweter S, Mittone A, Brun E, Ponchut C, Reiser M F, Coan P and Olivo A 2016 Phys. Med. Biol. 61 8750 [17] Izadifar Z, Honaramooz A, Wiebe S, Belev G, Chen X and Chapman D 2016 Biomaterials 82 151 [18] Aulakh G K, Mann A, Belev G, Wiebe S, Kuebler W M, Singh B and Chapman D 2017 Phys. Med. Biol. 63 015009 [19] Müeller B R, Cooper R C, Lange A, Kupsch A, Wheeler M, Hentschel M P, Staude A, Pandey A, Shyam A and Bruno G 2018 Acta Mater. 144 627 [20] Laquai R, Müller B R, Kasperovich G, Haubrich J, Requena G and Bruno G 2018 Mater. Res. Lett. 6 130 [21] Kitchen M J, Buckley G A, Kerr L T, Lee K L and Hooper S B 2020 Biomed. Opt. Express 11 4176 [22] Takeya S, Nakano K, Thammawong M, Umeda H, Yoneyama A, Takeda T, Hyodo K and Matsuo S 2016 Food. Chem. 205 122 [23] Bravin A, Coan P and Suortti P 2013 Phys. Med. Biol. 58 R1 [24] Diemoz P C, Coan P, Glaser C and Bravin A 2010 Opt. Express 18 3494 [25] Pagot E, Cloetens P, Fiedler S, Bravin A and Thomlinson W 2003 Appl. Phys. Lett. 82 3421 [26] Wernick M N, Wirjadi O, Chapman D, Zhong Z, Galatsanos N P, Yang Y, Brankov J G, Oltulu O, Anastasio M A and Muehleman C 2003 Phys. Med. Biol. 48 3875 [27] Nesterets Y I, Coan P, Gureyev T E, Bravin A, Cloetens P and Wilkins S 2006 Acta. Crys. A62 296 [28] Rigon L, Arfelli F and Menk R H 2007 Appl. Phys. Lett. 90 114102 [29] Majidi K, Li J, Muehleman C and Brankov J G 2014 Phys. Med. Biol. 59 1877 [30] Bao Y, Wang Y, Li P Y, Wu Z, Shao Q G, Gao K, Wang Z L, Ju Z Q, Zhang K, Yuan Q X, Huang W X, Zhu P P and Wu Z Y 2015 J. Synchrotron Radiat. 22 786 [31] Arfelli F, Astolfo A, Rigon L and Menk R H 2018 Sci. Rep. 8 362 [32] Wang Z L, Liu D L, Zhang J, Huang W X, Yuan Q X, Gao K and Wu Z 2018 J. Synchrotron Radiat. 25 1206 [33] Yoneyama A, Lwin T T and Kawamoto M 2020 J. Synchrotron Radiat. 27 468 [34] Christian H, Martino L, Georg P, Marcus R, Thomas W, Thomas M, Gisela A and Ludwig R 2017 Opt. Express 25 32897 [35] Fabio D M, Mathias M, Lorenz B, Peter N, Julia H and Franz P 2018 Opt. Express 26 12707 [36] Chapman D, Nesch I, Hasnah M O and Morrison T I 2006 Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 562 461 [37] Vine D J, Paganin D M, Pavlov K M, Kräußlich J, Wehrhan O, Uschmann I and Förster E 2007 Appl. Phys. Lett. 91 254110 [38] Nesch I, Fogarty D P, Tzvetkov T, Reinhart B, Walus A C, Khelashvili G, Muehleman C and Chapman D 2009 Rev. Sci. Instrum. 80 093702 [39] Khelashvili G, Brankov J G, Chapman D, Anastasio M A, Yang Y, Zhong Z and Wernick M N 2006 Phys. Med. Biol. 51 221 [40] Yang H, Xuan R J, Hu C H and Duan J H 2014 Chin. Phys. B 23 048701 [41] Yuan Q X, Zhang K, Hong Y L, Huang W X, Gao K, Wang Z L, Zhu P P, Gelb J, Tkachuk A, Hornberger B, Feser M, Yun W B and Wu Z Y 2012 J. Synchrotron Radiat. 19 1021 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|