Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(7): 074202    DOI: 10.1088/1674-1056/acbf27
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optical encryption scheme based on spread spectrum ghost imaging

Jin-Fen Liu(刘进芬)1,2, Yue Dong(董玥)1, Le Wang(王乐)1, and Sheng-Mei Zhao(赵生妹)1,†
1 Institute of Signal Processing and Transmission, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 NanJing Tech University Pujiang Institute, Nanjing 211222, China
Abstract  An optical encryption (OE) scheme based on the spread spectrum ghost imaging (SSGI), named as SSGI-OE, is proposed to obtain a high security with a smaller key. In the scheme, the randomly selected row number of a Hadamard matrix of order N is used as the secure key, and shared with the authorized user, Bob, through a private channel. Each corresponding row vector of the order-N Hadamard matrix is then used as the direct sequence code to modulate a speckle pattern for the ghost imaging system, and an image is encrypted with the help of the SSGI. The measurement results from the bucket detector, named as ciphertext, are then transmitted to Bob through a public channel. The illuminating speckle patterns are also shared with Bob by the public channel. With the correct secure key, Bob could reconstruct the image with the aid of the SSGI system, whereas the unauthorized user, Eve, could not obtain any useful information of the encrypted image. The numerical simulations and experimental results show that the proposed scheme is feasible with a higher security and a smaller key. For the 32×32 pixels image, the number of bits sent from Alice to Bob by using SSGI-OE (M=1024, N=2048) scheme is only 0.0107 times over a computational ghost imaging optical encryption scheme. When the eavesdropping ratio (ER) is less than 40%, the eavesdropper cannot acquire any information of the encrypted image. The extreme circumstance for the proposed SSGI-OE scheme is also discussed, where the eavesdropper begins to extract the information when ER is up to 15%.
Keywords:  optical encryption      ghost imaging      spread spectrum      correlated imaging  
Received:  15 November 2022      Revised:  21 February 2023      Accepted manuscript online:  27 February 2023
PACS:  42.30.-d (Imaging and optical processing)  
  42.30.Wb (Image reconstruction; tomography)  
  42.30.Va (Image forming and processing)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871234 and 62001249), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (Grant No. KYCX20 0729), the Natural Science Research Project of Higher Education of Jiangsu Province (Grant No. 20KJB510030), the Qing Lan Project of Jiangsu Province (Su Teacher's Letter[2022] No. 29), the Research project of NanJing Tech University Pujiang Institute (Grant No. njpj2022-1-25), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Corresponding Authors:  Sheng-Mei Zhao     E-mail:  zhaosm@njupt.edu.cn

Cite this article: 

Jin-Fen Liu(刘进芬), Yue Dong(董玥), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹) Optical encryption scheme based on spread spectrum ghost imaging 2023 Chin. Phys. B 32 074202

[1] Hamza A and Kumar B 2020 9th International Conference System Modeling and Advancement in Research Trends (SMART), December 04-05, 2020, Moradabad, India, p. 333
[2] Deng F and Long G 2004 Phys. Rev. A 69 052319
[3] Bennett C H and Brassard G 2003 arXiv:2003.06557v1 [quant-ph]
[4] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[5] Ekert A K 1991 Phys. Rev. Lett. 67 661
[6] Refregier P and Javidi B 1995 Opt. Lett. 20 767
[7] Liu S, Guo C and Sheridan J T 2014 Opt. Laser Technol. 57 327
[8] Pittman T B, Shih Y H, Strekalov D V and Sergienko A V 1995 Phys. Rev. A 52 R3429(R)
[9] Bennink R S, Bentley S J and Boyd R W 2002 Phys. Rev. Lett. 89 113601
[10] Zhang D, Zhai Y, Wu L and Chen X 2005 Opt. Lett. 30 2354
[11] Deng C, Gong W and Han S 2016 Opt. Express 24 25983
[12] Huang H, Zhou C, Tian T, Liu D and Song L 2018 Opt. Commun. 412 60
[13] Zhang H and Duan D 2021 Opt. Express 29 43929
[14] Wang C, Lan R, Ren C and Cao D 2020 Phys. Rev. A 101 033819
[15] Wang L and Zhao S 2020 IEEE Photon. J. 12 6901113
[16] Wang L and Zhao S 2021 Opt. Express 29 24486
[17] Liu J, Wang L and Zhao S 2022 Chin. Phys. B 31 084202
[18] Guo H, Wang L and Zhao S 2022 Chin. Phys. B 31 084201
[19] Wang L, Guo H and Zhao S 2022 Chin. Phys. B 31 114202
[20] Zhang H, Xia Y and Duan D 2021 Chin. Phys. B 30 124209
[21] He X, Zhao S and Wang L 2021 Chin. Phys. B 30 054201
[22] Shapiro J H 2008 Phys. Rev. A 78 061802(R)
[23] Clemente P, Durán V, Torres-Company V, Tajahuerce E and Lancis J 2010 Opt. Lett. 35 2391
[24] Tanha M, Kheradmand R and Ahmadi-Kandjani S 2012 Appl. Phys. Lett. 101 101108
[25] Zhao S, Wang L, Liang W, Cheng W and Gong L 2015 Opt. Commun. 353 90
[26] Zhang Y and Zhao S 2017 Chin. Phys. B 26 054205
[27] Kang Y, Zhang L and Zhang D 2018 Opt. Laser Eng. 111 58
[28] Sui L, Du C, Xu M, Tian A and Asundi A 2019 Opt. Express 27 16493
[29] Zhao S, Yu X, Wang L, Li W and Zheng B 2020 Opt. Commun. 474 126086
[30] Yuan S, Wang L, Liu X and Zhou X 2020 Opt. Lett. 45 3917
[31] Zafari M, Kheradmand R and Ahmadi-Kandjani S 2014 J. Opt. 16 105405
[32] Zhu J, Yang X, Meng X, Wang Y, Yin Y, Sun X and Dong G 2018 Opt. Commun. 420 34
[33] Chen Z, Shi J and Zeng G 2016 Appl. Opt. 55 8644
[34] Kong L, Li Y, Qian S, Tu C and Wang H 2013 Phys. Rev. A 88 013852
[35] Zheng P, Tan Q and Liu H 2021 Opt. Express 29 21290
[36] Zheng P, Ye Z, Xiong J and Liu H 2022 Opt. Express 30 21866
[37] Liu Y, Zheng P and Liu H 2022 Opt. Express 30 14073
[38] Wang L, Zhao S, Cheng W, Gong L and Chen H 2016 Opt. Commun. 366 314
[39] Liu J, Wang L and Zhao S 2021 Opt. Express 29 41485
[40] Liu J, Wang L and Zhao S 2022 Appl. Opt. 61 7102
[41] Corinthios M 2009 Signals, Systems, Transforms and Digital Signal Processing with MATLAB (New York: CRC Press) pp. 914-915
[1] Principle of subtraction ghost imaging in scattering medium
Qin Fu(付芹), Yanfeng Bai(白艳锋), Wei Tan(谭威), Xianwei Huang(黄贤伟), Suqin Nan(南苏琴), and Xiquan Fu(傅喜泉). Chin. Phys. B, 2023, 32(6): 064203.
[2] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[3] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[4] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[5] Imaging a periodic moving/state-changed object with Hadamard-based computational ghost imaging
Hui Guo(郭辉), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084201.
[6] Orthogonal-triangular decomposition ghost imaging
Jin-Fen Liu(刘进芬), Le Wang(王乐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(8): 084202.
[7] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[8] Iterative filtered ghost imaging
Shao-Ying Meng(孟少英), Mei-Yi Chen(陈美伊), Jie Ji(季杰), Wei-Wei Shi(史伟伟), Qiang Fu(付强), Qian-Qian Bao(鲍倩倩), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2022, 31(2): 028702.
[9] Full color ghost imaging by using both time and code division multiplexing technologies
Le Wang(王乐), Hui Guo(郭辉), and Shengmei Zhao(赵生妹). Chin. Phys. B, 2022, 31(11): 114202.
[10] High speed ghost imaging based on a heuristic algorithm and deep learning
Yi-Yi Huang(黄祎祎), Chen Ou-Yang(欧阳琛), Ke Fang(方可), Yu-Feng Dong(董玉峰), Jie Zhang(张杰), Li-Ming Chen(陈黎明), and Ling-An Wu(吴令安). Chin. Phys. B, 2021, 30(6): 064202.
[11] Handwritten digit recognition based on ghost imaging with deep learning
Xing He(何行), Sheng-Mei Zhao(赵生妹), and Le Wang(王乐). Chin. Phys. B, 2021, 30(5): 054201.
[12] Ghost imaging-based optical cryptosystem for multiple images using integral property of the Fourier transform
Yi Kang(康祎), Leihong Zhang(张雷洪), Hualong Ye(叶华龙), Dawei Zhang(张大伟), and Songlin Zhuang(庄松林). Chin. Phys. B, 2021, 30(12): 124207.
[13] Computational ghost imaging with deep compressed sensing
Hao Zhang(张浩), Yunjie Xia(夏云杰), and Deyang Duan(段德洋). Chin. Phys. B, 2021, 30(12): 124209.
[14] Compressed ghost imaging based on differential speckle patterns
Le Wang(王乐), Shengmei Zhao(赵生妹). Chin. Phys. B, 2020, 29(2): 024204.
[15] Super-resolution filtered ghost imaging with compressed sensing
Shao-Ying Meng(孟少英), Wei-Wei Shi(史伟伟), Jie Ji(季杰), Jun-Jie Tao(陶俊杰), Qian Fu(付强), Xi-Hao Chen(陈希浩), and Ling-An Wu(吴令安). Chin. Phys. B, 2020, 29(12): 128704.
No Suggested Reading articles found!