Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(11): 116803    DOI: 10.1088/1674-1056/ad8554
SPECIAL TOPIC — Stephen J. Pennycook: A research life in atomic-resolution STEM and EELS Prev   Next  

Making the link between ADF and 4D STEM: Resolution, transfer and coherence

Peter D. Nellist1,† and Timothy J. Pennycook2
1 Department of Materials, University of Oxford, Oxford, UK;
2 EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
Abstract  Steve Pennycook is a pioneer in the application of high-resolution scanning transmission electron microscopy (STEM) and in particular the use of annular dark-field (ADF) imaging. Here we show how a general framework for 4D STEM allows clear links to be made between ADF imaging and the emerging methods for reconstructing images from 4D STEM data sets. We show that both ADF imaging and ptychographical reconstruction can be thought of in terms of integrating over the overlap regions of diffracted discs in the detector plane. This approach allows the similarities in parts of their transfer functions to be understood, though we note that the transfer functions for ptychographic imaging cannot be used as a measure of information transfer. We also show that conditions of partial spatial and temporal coherence affect ADF imaging and ptychography similarly, showing that achromatic interference can always contribute to the image in both cases, leading to a robustness to partial temporal coherence that has enabled high-resolution imaging.
Keywords:  image forming and processing      phase retrieval      electron microscopy      scanning transmission electron microscope (STEM)  
Received:  03 September 2024      Revised:  05 October 2024      Accepted manuscript online:  10 October 2024
PACS:  68.37.Ma (Scanning transmission electron microscopy (STEM))  
  42.30.Va (Image forming and processing)  
  42.30.Rx (Phase retrieval)  
  87.64.Ee (Electron microscopy)  
Fund: We acknowledge funding from the European Research Council (ERC) under the European Union's Horizon 2020 Research and Innovation Programme via Grant Agreement No. 802123-HDEM (TJP) and from the UK Engineering and Physical Sciences Research Council (EPSRC) via grant EP/M010708/1 (PDN).
Corresponding Authors:  Peter D. Nellist     E-mail:  peter.nellist@materials.ox.ac.uk

Cite this article: 

Peter D. Nellist and Timothy J. Pennycook Making the link between ADF and 4D STEM: Resolution, transfer and coherence 2024 Chin. Phys. B 33 116803

[1] Howie A 1979 Journal of Microscopy 117 11
[2] McGibbon A J, Pennycook S J and Angelo J E 1995 Science 269 519
[3] Nellist P D and Pennycook S J 1996 Science 274 413
[4] Müller K, Krause F F, Béché A, Schowalter M, Galioit V, Löffler S, Verbeeck J, Zweck J, Schattschneider P and Rosenauer A 2014 Nat. Commun. 5 5653
[5] Lazic I, Bosch E G T and Lazar S 2016 Ultramicroscopy 160 265
[6] Krivanek O L, Dellby N and Lupini A R 1999 Ultramicroscopy 78 1
[7] Rodenburg J M and Bates R H T 1992 Phil. Trans. Roy. Soc. Lond. Ser. A: Phys. Eng. Sci. 339 521
[8] Hoppe W 1969 Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography 25 495
[9] Hawkes P W 1982 Ultramicroscopy 9 27
[10] Nellist P D and Pennycook S J 2000 Advances in Imaging and Electron Physics 113 147
[11] Loane R F, Xu P and Silcox J 1992 Ultramicroscopy 40 121
[12] Pennycook S J and Jesson D E 1990 Physical Review Letters 64 938
[13] Nellist P D and Pennycook S J 1999 Ultramicroscopy 78 111
[14] Song W, Perez-Osorio M A, Marie J J, Liberti E, Luo X, O’Leary C, House R A, Bruce P G and Nellist P D 2022 Joule 6 1049
[15] Maiden A M and Rodenburg J M 2009 Ultramicroscopy 109 1256
[16] Maiden A M, Humphry M J and Rodenburg J M 2012 J. Opt. Soc. Am. A 29 1606
[17] Müller-Caspary K, Krause F F, Grieb T, Löffler S, Schowalter M, Beché A, Galioit V, Marquardt D, Zweck J, Schattschneider P, Verbeeck J and Rosenauer A 2017 Ultramicroscopy 178 62
[18] Black G and Linfoot E H 1957 Math. Phys. Eng. Sci. 239 522
[19] Nellist P D and Pennycook S J 1998 Journal of Microscopy 190 159
[20] McGibbon A J, Pennycook S J and Jesson D E 1999 Journal of Microscopy 195 44
[21] Pennycook T J, Lupini A R, Yang H, Murfitt M F, Jones L and Nellist P D 2015 Ultramicroscopy 151 160
[22] Yang H, Rutte R N, Jones L, Simson M, Sagawa R, Ryll H, Huth M, Pennycook T J, Green M L H, Soltau H, Kondo Y, Davis B G and Nellist P D 2016 Nat. Commun. 7 12532
[23] Seki T, Ikuhara Y and Shibata N 2018 Ultramicroscopy 193 118
[24] Dwyer C and Paganin D M 2024 Phys. Rev. B 110 024110
[25] Chen Z, Jiang Y, Shao Y T, Holtz M E, Odstrčil M, Guizar-Sicairos M, Hanke I, Ganschow S, Schlom D G and Muller D A 2021 Science 372 826
[26] Nellist P D, McCallum B C and Rodenburg J M 1995 Nature 374 630
[27] Nellist P D and Pennycook S J 1998 Phys. Rev. Lett. 81 4156
[28] Nellist P D and Rodenburg J M 1994 Ultramicroscopy 54 61
[29] Pennycook T J, Martinez G T, Nellist P D and Meyer J C 2019 Ultramicroscopy 196 131
[1] Multidimensional images and aberrations in STEM
Eric R. Hoglund and Andrew R. Lupini. Chin. Phys. B, 2024, 33(9): 096807.
[2] Visualizing extended defects at the atomic level in a Bi2Sr2CaCu2O8+δ superconducting wire
Kejun Hu(胡柯钧), Shuai Wang(王帅), Boyu Li(李泊玉), Ying Liu(刘影), Binghui Ge(葛炳辉), and Dongsheng Song(宋东升). Chin. Phys. B, 2024, 33(9): 096101.
[3] Probing nickelate superconductors at atomic scale: A STEM review
Yihan Lei(雷一涵), Yanghe Wang(王扬河), Jiahao Song(宋家豪), Jinxin Ge(葛锦昕), Dirui Wu(伍迪睿), Yingli Zhang(张英利), and Changjian Li(黎长建). Chin. Phys. B, 2024, 33(9): 096801.
[4] Revealing the microstructures of metal halide perovskite thin films via advanced transmission electron microscopy
Yeming Xian(冼业铭), Xiaoming Wang(王晓明), and Yanfa Yan(鄢炎发). Chin. Phys. B, 2024, 33(9): 096803.
[5] Atomically self-healing of structural defects in monolayer WSe2
Kangshu Li(李康舒), Junxian Li(李俊贤), Xiaocang Han(韩小藏), Wu Zhou(周武), and Xiaoxu Zhao(赵晓续). Chin. Phys. B, 2024, 33(9): 096804.
[6] Multiphase cooperation for multilevel strain accommodation in a single-crystalline BiFeO3 thin film
Wooseon Choi, Bumsu Park, Jaejin Hwang, Gyeongtak Han, Sang-Hyeok Yang, Hyeon Jun Lee, Sung Su Lee, Ji Young Jo, Albina Y. Borisevich, Hu Young Jeong, Sang Ho Oh, Jaekwang Lee, and Young-Min Kim. Chin. Phys. B, 2024, 33(9): 096805.
[7] Symmetry quantification and segmentation in STEM imaging through Zernike moments
Jiadong Dan, Cheng Zhang, Xiaoxu Zhao(赵晓续), and N. Duane Loh. Chin. Phys. B, 2024, 33(8): 086803.
[8] Cryo-EM combined with image deconvolution to determine ZIF-8 crystal structure
Kang Wu(吴抗), Baisong Yang(杨柏松), Wenhua Xue(薛文华), Dapeng Sun(孙大鹏), Binghui Ge(葛炳辉), and Yumei Wang(王玉梅). Chin. Phys. B, 2024, 33(7): 076802.
[9] Nanoscale cathodoluminescence spectroscopy probing the nitride quantum wells in an electron microscope
Zhetong Liu(刘哲彤), Bingyao Liu(刘秉尧), Dongdong Liang(梁冬冬), Xiaomei Li(李晓梅), Xiaomin Li(李晓敏), Li Chen(陈莉), Rui Zhu(朱瑞), Jun Xu(徐军), Tongbo Wei(魏同波), Xuedong Bai(白雪冬), and Peng Gao(高鹏). Chin. Phys. B, 2024, 33(3): 038502.
[10] Ultrafast photoemission electron microscopy: A multidimensional probe of nonequilibrium physics
Yanan Dai(戴亚南). Chin. Phys. B, 2024, 33(3): 038703.
[11] Physics through the microscope
Stephen J. Pennycook, Ryo Ishikawa, Haijun Wu(武海军), Xiaoxu Zhao(赵晓续), Changjian Li(黎长建), Duane Loh, Jiadong Dan, and Wu Zhou(周武). Chin. Phys. B, 2024, 33(11): 116801.
[12] Capturing the non-equilibrium state in light—matter—free-electron interactions through ultrafast transmission electron microscopy
Wentao Wang(汪文韬), Shuaishuai Sun(孙帅帅), Jun Li(李俊), Dingguo Zheng(郑丁国), Siyuan Huang(黄思远), Huanfang Tian(田焕芳), Huaixin Yang(杨槐馨), and Jianqi Li(李建奇). Chin. Phys. B, 2024, 33(1): 010701.
[13] Atomic-scale insights of indium segregation and its suppression by GaAs insertion layer in InGaAs/AlGaAs multiple quantum wells
Shu-Fang Ma(马淑芳), Lei Li(李磊), Qing-Bo Kong(孔庆波), Yang Xu(徐阳), Qing-Ming Liu(刘青明), Shuai Zhang(张帅), Xi-Shu Zhang(张西数), Bin Han(韩斌), Bo-Cang Qiu(仇伯仓), Bing-She Xu(许并社), and Xiao-Dong Hao(郝晓东). Chin. Phys. B, 2023, 32(3): 037801.
[14] Room-temperature creation and manipulation of skyrmions in MgO/FeNiB/Mo multilayers
Wen-Hui Liang(梁文会), Jian Su(苏鉴), Yu-Tong Wang(王雨桐), Ying Zhang(张颖), Feng-Xia Hu(胡凤霞), and Jian-Wang Cai(蔡建旺). Chin. Phys. B, 2023, 32(12): 127504.
[15] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
No Suggested Reading articles found!