Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(9): 090303    DOI: 10.1088/1674-1056/ade1c5
Special Issue: Featured Column — INSTRUMENTATION AND MEASUREMENT
INSTRUMENTATION AND MEASUREMENT Prev   Next  

A low-noise and high-stability DC source for superconducting quantum circuits

Daxiong Sun(孙大雄)1,2,3,†, Jiawei Zhang(张家蔚)1,2,3,†,‡, Peisheng Huang(黄培生)1,2,3, Yubin Zhang(张玉斌)2, Zechen Guo(郭泽臣)1,2,3, Tingjin Chen(陈庭槿)1,2,3, Rui Wang(王睿)2,3,4, Xuandong Sun(孙炫东)2,3,4, Jiajian Zhang(张家健)2, Wenhui Huang(黄文辉)1,2,3, Jiawei Qiu(邱嘉威)2, Ji Chu(储继)2, Ziyu Tao(陶子予)2, Weijie Guo(郭伟杰)2, Xiayu Linpeng(林彭夏雨)2, Ji Jiang(蒋骥)1,2,3, Jingjing Niu(牛晶晶)2,5, Youpeng Zhong(钟有鹏)1,2,3,5,§, and Dapeng Yu(俞大鹏)1,2,3,5
1 Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518048, China;
2 International Quantum Academy, Shenzhen 518048, China;
3 Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518048, China;
4 Department of Physics, Southern University of Science and Technology, Shenzhen 518048, China;
5 Shenzhen Branch, Hefei National Laboratory, Shenzhen 518048, China
Abstract  With the rapid scaling of superconducting quantum processors, electronic control systems relying on commercial off-the-shelf instruments face critical bottlenecks in signal density, power consumption, and crosstalk mitigation. Here we present a custom dual-channel direct current (DC) source module (QPower) dedicated to large-scale superconducting quantum processors. The module delivers a voltage range of $\pm7$ V with 200 mA maximum current per channel, while achieving the following key performance benchmarks: noise spectral density of 20 nV/$\sqrt{\mathrm{Hz}}$ at 10 kHz, output ripple $<$500 μV$_{\mathrm{pp}}$ within 20 MHz bandwidth, and long-term voltage drift $<$5 μV$_{\mathrm{pp}}$ over 12 hours. Integrated into the control electronics of a 66-qubit quantum processor, QPower enables qubit coherence time of $T_1$ = 87.6 μs and Ramsey dephasing time of $T_2$ = 5.1 μs, with qubit resonance frequency drift constrained to $\pm40$ kHz during 12-hour operation. This modular design is compact in size and efficient in energy consumption, providing a scalable DC source solution for intermediate-scale quantum processors with stringent noise and stability requirements, with potential extensions to other quantum hardware platforms and precision measurement systems.
Keywords:  superconducting quantum circuits      superconducting qubit      low noise DC source  
Received:  01 May 2025      Revised:  01 June 2025      Accepted manuscript online:  06 June 2025
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the Science, Technology and Innovation Commission of Shenzhen Municipality (Grant No. KQTD20210811090049034) and the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301703).
Corresponding Authors:  Jiawei Zhang, Youpeng Zhong     E-mail:  zhangjw2022@mail.sustech.edu.cn;zhongyp@sustech.edu.cn

Cite this article: 

Daxiong Sun(孙大雄), Jiawei Zhang(张家蔚), Peisheng Huang(黄培生), Yubin Zhang(张玉斌), Zechen Guo(郭泽臣), Tingjin Chen(陈庭槿), Rui Wang(王睿), Xuandong Sun(孙炫东), Jiajian Zhang(张家健), Wenhui Huang(黄文辉), Jiawei Qiu(邱嘉威), Ji Chu(储继), Ziyu Tao(陶子予), Weijie Guo(郭伟杰), Xiayu Linpeng(林彭夏雨), Ji Jiang(蒋骥), Jingjing Niu(牛晶晶), Youpeng Zhong(钟有鹏), and Dapeng Yu(俞大鹏) A low-noise and high-stability DC source for superconducting quantum circuits 2025 Chin. Phys. B 34 090303

[1] Castelvecchi D 2023 Nature 624 238
[2] Xu S, Sun Z, Wang K, Xiang L, Bao Z, Zhu Z, Shen F, Song Z, Zhang P, et al. 2023 Chin. Phys. Lett. 40 060301
[3] Acharya R, Abanin D, Aghababaie-Beni L, et al. 2025 Nature 638 920
[4] Wang Z, Ma Z, Yu X, Zheng W, Zhou K, Zhang Y, Zhang Y, Lan D, Zhao J, et al. 2023 Chin. Phys. B 32 100304
[5] Gao D, Fan D, Zha C, Bei J, Cai G, Cai J, Cao S, Chen F, Chen J, et al. 2025 Phys. Rev. Lett. 134 090601
[6] Chen L, Lee K, Liu C, Marinelli B, Naik R, Kang Z, Goss N, Kim H, Santiago D, et al. 2025 arXiv:2503.04702
[7] Ball P 2021 Nature 599 542
[8] Choi C 2023 IEEE Spectrum 60 46
[9] Liang F, Miao P, Lin J, Xu Y, Guo C, Sun L, Liao S, Jin G and Peng C 2018 arXiv:1806.02645
[10] Zhang J, Sun X, Guo Z, Yuan Y, Zhang Y, Chu J, Huang W, Liang Y, Qiu J, et al. 2024 Chin. Phys. B 33 120309
[11] Zhu L, Zhu X, Yue Z, Tu T and Li C 2025 Chin. Phys. B 34 030302
[12] Li Z, Yu H, Tan X, Zhao S and Yu Y 2019 Chin. Phys. B 28 098505
[13] Oshio T, Nishimoto R, Higuchi T, Hayasaka K, Koike K, Morisaka S, Miyoshi T, Ohira R and Tanaka U 2025 J. Appl. Phys. 137 144401
[14] Ohira R, Morisaka S, Nakamura I, Noguchi A and Miyoshi T 2025 arXiv:2504.01815
[15] Kalfus W, Lee D, Ribeill G, Fallek S, Wagner A, Donovan B, Ristè D and Ohki T 2020 IEEE Transactions on Quantum Engineering 1 1
[16] Rietsche R, Dremel C, Bosch S, Steinacker L, Meckel M and Leimeister J 2022 Electronic Markets 32 2525
[17] Niu Z, Gao W, He X, Wang Y, Wang Z and Lin Z 2024 Appl. Phys. Lett. 124 254002
[18] Ryan C, Johnson B, Ristè D, Donovan B and Ohki T 2017 Rev. Sci. Instrum. 88 104703
[19] Córcoles A, Kandala A, Javadi-Abhari A, McClure D, Cross A, Temme K, Nation P, Steffen M and Gambetta J 2019 Proc. IEEE 108 1338
[20] Wang Z, Yu H, Liu R, et al. 2021 Chin. Phys. B 30 110305
[21] Krantz P, Kjaergaard M, Yan F, Orlando T, Gustavsson S and Oliver W 2019 Appl. Phys. Rev. 6 021318
[22] Yang Y, Shen Z, Zhu X, et al. 2022 Rev. Sci. Instrum. 93 074701
[23] Guo L, Duan P, Du L, et al. 2024 Chin. Phys. B 33 090303
[24] Ding C, Di Federico M, Hatridge M, Houck A, Leger S, Martinez J, Miao C, Schuster D, Stefanazzi L, et al. 2024 Phys. Rev. Res. 6 013305
[25] Stefanazzi L, Treptow K, Wilcer N, Stoughton C, Bradford C, Uemura S, Zorzetti S, Montella S, Cancelo G, et al. 2022 Rev. Sci. Instrum. 93 044709
[26] Xu Y, Huang G, Fruitwala N, Rajagopala A, Naik R, Nowrouzi K, Santiago D and Siddiqi I 2023 arXiv:2309.10333
[27] Xu Y, Huang G, Balewski J, Naik R, Morvan A, Mitchell B, Nowrouzi K, Santiago D and Siddiqi I 2021 IEEE Transactions on Quantum Engineering 2 1
[28] Guo C, Liang F, Lin J, et al. 2019 IEEE Transactions on Nuclear Science 66 1222
[29] Lin J, Liang F, Xu Y, Sun L, Guo C, Liao S and Peng C 2019 AIP Advances 9 115309
[30] Sun L, Liang F, Lin J, Guo C, Xu Y, Liao S and Peng C 2020 IEEE Transactions on Nuclear Science 67 2148
[31] Song Y, Beltrán L, Besedin I, Kerschbaum M, Pechal M, Swiadek F, Hellings C, Zanuz D, Flasby A, et al. 2024 arXiv:2409.06989
[32] Li T, Zhang J, Chen B, Huang K, Liu H, Xiao Y, Deng C, Liang G, Chen C, et al. 2025 Phys. Rev. Appl. 23 024059
[33] Lisenfeld J, Bilmes A and Ustinov A 2023 npj Quantum Information 9 8
[34] Grytsenko I, van Haagen S, Rybalko O, Jennings A, Mohan R, Tian Y and Kawakami E 2025 J. Low Temp. Phys. 219 282
[35] Terai H, Kameda Y, Yorozu S, Fujimaki A and Wang Z 2003 IEEE Transactions on Applied Superconductivity 13 502
[36] Macklin C, O’brien K, Hover D, Schwartz M, Bolkhovsky V, Zhang X, Oliver W and Siddiqi I 2015 Science 350 307
[37] Guo Z, Sun D, Huang P, Sun X, Yuan Y, Zhang J, Huang W, Liang Y, Qiu J, et al. 2025 Chip 100146
[38] Quinton F, Myhr P, BaraniM, Crespo del Granado P and Zhang H 2025 Scientific Reports 15 12733
[39] Ladd T, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O’Brien J 2010 Nature 464 45
[40] Analog Devices 2015 LTZ1000 Datasheet and Product Info | Analog Devices
[41] Huang W, Zhou X, Zhang L, Zhang J, Zhou Y, Guo Z, Yao B, Huang P, Li Q, et al. 2025 arXiv:2502.19185
[42] Wang W and Zhang X 2023 International Conference on Electronic Engineering and Informatics 584
[43] Egan M 2010 Analog Dialogue 44 1
[44] De Cos J, Suárez A, Garcı J, et al. 2015 IEEE Transactions on Microwave Theory and Techniques 63 4284
[45] Jenkins A 2013 Phys. Rep. 525 167
[46] Pandiev I 2023 International Journal of Circuit Theory and Applications 51 880
[47] Safonov M and Athans M 2003 IEEE Transactions on Automatic Control 22 173
[48] Morroni J, Zane R and Maksimovic D 2009 IEEE Transactions on Power Electronics 24 559
[49] Liang K, Zhu M, Qin X, Meng Z, Wang P and Du J 2024 Rev. Sci. Instrum. 95 024701
[50] He Y, Gorman S, Keith D, et al. 2019 Nature 571 371
[51] Xue X, Russ M, Nodar U, et al. 2022 Nature 601 343
[52] Xue X, Patra B, Jeroen S, et al. 2021 Nature 593 205
[1] All-microwave CZ gate based on fixed-frequency driven coupler
Wanpeng Gao(高万鹏), Xiaoliang He(何潇梁), Zhengqi Niu(牛铮琦), Daqiang Bao(包大强), Kuang Liu(刘匡), Junfeng Chen(陈俊锋), Zhen Wang(王镇), and Z. R. Lin(林志荣). Chin. Phys. B, 2025, 34(4): 040304.
[2] In-situ deposited anti-aging TiN capping layer for Nb superconducting quantum circuits
Hao-Ran Tao(陶浩然), Lei Du(杜磊), Liang-Liang Guo(郭亮亮), Yong Chen(陈勇), Hai-Feng Zhang(张海峰), Xiao-Yan Yang(杨小燕), Guo-Liang Xu(徐国良), Chi Zhang(张 驰), Zhi-Long Jia(贾志龙), Peng Duan(段鹏), and Guo-Ping Guo(郭国平). Chin. Phys. B, 2024, 33(9): 090310.
[3] M2CS: A microwave measurement and control system for large-scale superconducting quantum processors
Jiawei Zhang(张家蔚), Xuandong Sun(孙炫东), Zechen Guo(郭泽臣), Yuefeng Yuan(袁跃峰), Yubin Zhang(张玉斌), Ji Chu(储继), Wenhui Huang(黄文辉), Yongqi Liang(梁咏棋), Jiawei Qiu(邱嘉威), Daxiong Sun(孙大雄), Ziyu Tao(陶子予), Jiajian Zhang(张家健), Weijie Guo(郭伟杰), Ji Jiang(蒋骥), Xiayu Linpeng(林彭夏雨), Yang Liu(刘阳), Wenhui Ren(任文慧), Jingjing Niu(牛晶晶), Youpeng Zhong(钟有鹏), and Dapeng Yu(俞大鹏). Chin. Phys. B, 2024, 33(12): 120309.
[4] Diagnosing quantum crosstalk in superconducting quantum chips by using out-of-time-order correlators
Yujia Zhang(张宇佳), Yu Zhang(张钰), Shaoxiong Li(李邵雄), Wen Zheng(郑文), and Yang Yu(于扬). Chin. Phys. B, 2024, 33(11): 110306.
[5] Calibration and cancellation of microwave crosstalk in superconducting circuits
Haisheng Yan(严海生), Shoukuan Zhao(赵寿宽), Zhongcheng Xiang(相忠诚), Ziting Wang(王子婷), Zhaohua Yang(杨钊华), Kai Xu(许凯), Ye Tian(田野), Haifeng Yu(于海峰), Dongning Zheng(郑东宁), Heng Fan(范桁), and Shiping Zhao(赵士平). Chin. Phys. B, 2023, 32(9): 094203.
[6] Entanglement properties of superconducting qubits coupled to a semi-infinite transmission line
Yang-Qing Guo(郭羊青), Ping-Xing Chen(陈平形), and Jian Li(李剑). Chin. Phys. B, 2023, 32(6): 060302.
[7] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[8] Single-flux-quantum-based qubit control with tunable driving strength
Kuang Liu(刘匡), Yifan Wang(王一凡), Bo Ji(季波), Wanpeng Gao(高万鹏), Zhirong Lin(林志荣), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(12): 128501.
[9] Realization of high-fidelity and robust geometric gates with time-optimal control technique in superconducting quantum circuit
Zhimin Wang(王治旻), Zhuang Ma(马壮), Xiangmin Yu(喻祥敏), Wen Zheng(郑文), Kun Zhou(周坤), Yujia Zhang(张宇佳), Yu Zhang(张钰), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(10): 100304.
[10] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[11] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[12] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[13] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[14] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[15] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
No Suggested Reading articles found!