Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 047105    DOI: 10.1088/1674-1056/ad2605
Special Issue: SPECIAL TOPIC — Valleytronics
SPECIAL TOPIC—Valleytronics Prev   Next  

Transport properties of Hall-type quantum states in disordered bismuthene

Jiaojiao Zhou(周娇娇)1, Jiangying Yu(余江应)1, Shuguang Cheng(成淑光)2,†, and Hua Jiang(江华)3,‡
1 Key Laboratory of Advanced Electronic Materials and Devices, School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China;
2 Department of Physics, Northwest University, Xi'an 710069, China;
3 School of Physical Science and Technology, Soochow University, Suzhou 215006, China
Abstract  Bismuthene, an inherently hexagonal structure characterized by a huge bulk gap, offers a versatile platform for investigating the electronic transport of various topological quantum states. Using nonequilibrium Green's function method and Landauer—Büttiker formula, we thoroughly investigate the transport properties of various Hall-type quantum states, including quantum spin Hall (QSH) edge states, quantum valley Hall kink (QVHK) states, and quantum spin—valley Hall kink (QSVHK) states, in the presence of various disorders. Based on the exotic transport features, a spin—valley filter, capable of generating a highly spin- and valley-polarized current, is proposed. The valley index and the spin index of the filtered QSVHK state are determined by the staggered potential and the intrinsic spin—orbit coupling, respectively. The efficiency of the spin—valley filter is supported by the spacial current distribution, the valley-resolved conductance, and the spin-resolved conductance. Compared with a sandwich structure for QSVHK, our proposed spin—valley filter can work with a much smaller size and is more accessible in the experiment.
Keywords:  electronic transport      bismuthene      spin—valley filter  
Received:  09 December 2023      Revised:  19 January 2024      Accepted manuscript online:  05 February 2024
PACS:  71.15.-m (Methods of electronic structure calculations)  
  73.20.-r (Electron states at surfaces and interfaces)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12104012), the Natural Science Foundation of Anhui Province of China (Grant No. 2108085MB42), the Key Research and Development Plan of Anhui Province of China (Grant No. 202104a05020048), the Major Science and Technology Project of Anhui Province of China (Grant No. 2021e03020007), and the Doctor Foundation of Anhui Jianzhu University (Grant No. 2019QDZ45).
Corresponding Authors:  Shuguang Cheng, Hua Jiang     E-mail:  sgcheng@nwu.edu.cn;jianghuaphy@suda.edu.cn

Cite this article: 

Jiaojiao Zhou(周娇娇), Jiangying Yu(余江应), Shuguang Cheng(成淑光), and Hua Jiang(江华) Transport properties of Hall-type quantum states in disordered bismuthene 2024 Chin. Phys. B 33 047105

[1] Haldane F D M 1988 Phys. Rev. Lett. 61 2015
[2] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[3] Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S and Geim A K 2014 Science 346 448
[4] Sui M, Chen G, Ma L, Shan W Y, Tian D, Watanabe K, Taniguchi T, Jin X, Yao W, Di X D and Zhang Y 2015 Nat. Phys. 11 1027
[5] Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T and Tarucha S 1988 Nat. Phys. 11 1032
[6] Geisenhof F R, Winterer F, Seiler A M, Lenz J, Martin I and Weitz R T 2022 Nat. Commun. 95 226801[RefAutoNo] Cheng S G, Liu H, Jiang H, Sun Q F and Xie X C 2018 Phys. Rev. Lett. 121 156801
[7] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3015
[8] Yan B and Zhang S C 2012 Rep. Prog. Phys. 75 096501
[9] Murakami S, Nagaosa N and Zhang S C 2004 Phys. Rev. Lett. 93 156804
[10] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 5806
[11] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
[13] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406
[14] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887[RefAutoNo] Cheng S G, Zhou J, Jiang H and Sun Q F 2016 New J. Phys. 18 103024[RefAutoNo] Yin L J, Jiang H, Qiao J B and He L 2016 Nat. Commun. 7 11760
[16] Ezawa M 2015 J. Phys. Soc. Jpn. 84 121003
[17] Jatiyanon K and Soodchomshom B 2018 Superlattices Microstruct. 120 540
[18] Ezawa M 2013 Phys. Rev. B 88 161406
[19] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[20] Aufray B, Kara A, Vizzini S, Oughaddou H, Lmacuteeandri C, Ealet B and Lay G L 2010 Appl. Phys. Lett. 96 183102
[21] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[22] Sichau J, Prada M, Anlauf T, Lyon T J, Bosnjak B, Tiemann L and Blick R H 2019 Phys. Rev. Lett. 122 046403
[23] Zhang S, Guo S, Chen Z, Wang Y, Gao H, Gmacuteomez-Herrero J, Ares P, Zamora F, Zhu Z and Zeng H 2018 Chem. Soc. Rev. 47 9821021
[24] Gui R, Jin H, Sun J, Jiang X and Sun Z 2019 J. Mater. Chem. A 7 25712
[25] Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W, Ni Z, Hao Y and Zeng H 2016 Nat. Commun. 7 13352
[26] Xu G, Zhou T, Scharf B and mcheckZutimacutec I 2020 Phys. Rev. Lett. 125 157402[RefAutoNo] Zhang S H, Yang W and Chang K 2018 Phys. Rev. B 97 085420[RefAutoNo] Cheng S G, Zhang R Z, Zhou J, Jiang H and Sun Q F 2018 Phys. Rev. B 97 085420
[27] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schmäfer J and Claessen R 2017 Science 357 287[RefAutoNo] Isaeva A, Rasche B and Ruck M 2013 Phys. Status Solidi Rapid Res. Lett. 7 39[RefAutoNo] Rasche B, Isaeva A, Ruck M, Borisenko S, Zabolotnyy V, Bmüchner B, Koepernik K, Ortix C, Richter M and van den Brink J 2013 Nat. Mater. 12 422
[28] Song Z, Liu C C, Yang J, Han J, Ye M, Fu B, Yang Y, Niu Q, Lu J and Yao Y 2014 NPG Asia Mater. 6 e147
[29] Zhou T, Zhang J, Jiang H, mcheckZutimacutec I and Yang Z 2018 NPJ Quantum Mater. 3 39[RefAutoNo] Zhou J, Zhou T, Cheng S G, Jiang H and Yang Z 2019 Phys. Rev. B 99 195422[RefAutoNo] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809[RefAutoNo] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
[30] Wang Y, Deng L, Wei Q, Wan Y, Liu Z, Lu X, Li Y, Bi L, Zhang L, Lu H, Chen H, Zhou P, Zhang L, Cheng Y, Zhao X, Ye Y, Huang W, Pennycook S J, Loh K P and Peng B 2020 Nano Lett. 20 2129
[31] Liu Z, Feng W, Xin H, Gao Y, Liu P, Yao Y, Wenggh H and Zhao J 2019 Mater. Horiz. 6 781
[32] Li J, Wang K, McFaul K J, Zern Z, Ren Y, Watanabe K, Taniguchi T, Qiao Z and Zhu J 2016 Nat. Nanotechnol. 11 1060
[33] Pan H, Li X, Zhang F and Yang S A 2015 Phys. Rev. B 92 041404
[35] Zhou T, Zhang J, Xue Y, Zhao B, Zhang H, Jiang H and Yang Z 2016 Phys. Rev. B 94 235449[RefAutoNo] Mannix A J, Kiraly B, Hersam M C and Guisinger N P 2017 Nat. Rev. Chem. 1 0014[RefAutoNo] Datta S 1995 Electronic transport in mesoscopic systems (Cambridge:Cambridge University Press) pp. 117——174
[36] Ando T 1989 Phys. Rev. B 40 5325
[37] Lee D H and Joannopoulos J D 1981 Phys. Rev. B 23 4997
[38] Sancho M P L, Sancho J M L and Rubio J 1984 J. Phys. F 14 1205
[39] Sancho M P L, Sancho J M L and Rubio J 1985 J. Phys. F 15 851[RefAutoNo] Jiang H, Wang L, Sun Q F and Xie X C 2009 Phys. Rev. B 80 165316[RefAutoNo] Zhang Y, Hu J P, Bernevig B A, Wang X R, Xie X C and Liu W M 2008 Phys. Rev. B 78 155413[RefAutoNo] Zhang J, Zhang Z Q, Cheng S G and Jiang H 2022 Phys. Rev. B 106 195304[RefAutoNo] Ando T 1991 Phys. Rev. B 44 8017[RefAutoNo] Zhang S H, Yang W and Chang K 2017 Phys. Rev. B 95 075421
[41] Zhou T, Cheng S, Schleenvoigt M, Schmüffelgen P, Jiang H, Yang Z and mcheckZutimacutec I 2021 Phys. Rev. Lett. 127 116402
[43] Kmönig M, Wiedmann S, Brmü$une C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766
[44] Culcer D, Keser A C, Li Y and Tkachov G 2020 2D Mater. 7 022007
[42] Ju L, Shi Z, Nair N, Lv Y, Jin C, Jr J V, Ojeda-Aristizabal C, Bechtel H A, Martin M C, Zettl A, Analytis J and Wang F 2015 Nature 520 650[RefAutoNo] Rycerz A, Tworzydlo J and Beenakker C 2007 Nat. Phys. 3 172[RefAutoNo] Liu Y, Song J, Li Y, Liu Y and Sun Q F 2013 Phys. Rev. B 87 195445[RefAutoNo] da Costa D R, Chaves A, Sena S H R, Farias G A and Peeters F M 2015 Phys. Rev. B 92 045417
[1] Anisotropic metal–insulator transition in strained VO2(B) single crystal
Zecheng Ma(马泽成), Shengnan Yan(闫胜楠), Zenglin Liu(刘增霖), Tao Xu(徐涛), Fanqiang Chen(陈繁强), Sicheng Chen(陈思成), Tianjun Cao(曹天俊), Litao Sun(孙立涛), Bin Cheng(程斌), Shi-Jun Liang(梁世军), and Feng Miao(缪峰). Chin. Phys. B, 2024, 33(6): 067103.
[2] Gate-field control of valley polarization in valleytronics
Ting-Ting Zhang(张婷婷), Yilin Han(韩依琳), Run-Wu Zhang(张闰午), Zhi-Ming Yu(余智明). Chin. Phys. B, 2024, 33(6): 067303.
[3] Magnetic and magnetotransport properties of layered TaCoTe2 single crystals
Ming Mei(梅明), Zheng Chen(陈正), Yong Nie(聂勇), Yuanyuan Wang(王园园), Xiangde Zhu(朱相德), Wei Ning(宁伟), and Mingliang Tian(田明亮). Chin. Phys. B, 2023, 32(12): 127303.
[4] Thermionic electron emission in the 1D edge-to-edge limit
Tongyao Zhang(张桐耀), Hanwen Wang(王汉文), Xiuxin Xia(夏秀鑫), Chengbing Qin(秦成兵), and Xiaoxi Li(李小茜). Chin. Phys. B, 2022, 31(5): 058504.
[5] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[6] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[7] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[8] Conformational change-modulated spin transport at single-molecule level in carbon systems
Yandong Guo(郭艳东), Xue Zhao(赵雪), Hongru Zhao(赵鸿儒), Li Yang(杨丽), Liyan Lin(林丽艳), Yue Jiang(姜悦), Dan Ma(马丹), Yuting Chen(陈雨婷), and Xiaohong Yan(颜晓红). Chin. Phys. B, 2022, 31(12): 127201.
[9] Tuning transport coefficients of monolayer MoSi2N4 with biaxial strain
Xiao-Shu Guo(郭小姝) and San-Dong Guo(郭三栋). Chin. Phys. B, 2021, 30(6): 067102.
[10] Understanding of impact of carbon doping on background carrier conduction in GaN
Zhenxing Liu(刘振兴), Liuan Li(李柳暗), Jinwei Zhang(张津玮), Qianshu Wu(吴千树), Yapeng Wang(王亚朋), Qiuling Qiu(丘秋凌), Zhisheng Wu(吴志盛), and Yang Liu(刘扬). Chin. Phys. B, 2021, 30(10): 107201.
[11] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[12] Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls
Lian Liu(刘恋), Wen-Xiang Chen(陈文祥), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2018, 27(4): 047201.
[13] Electronic states and spin-filter effect in three-dimensional topological insulator Bi2Se3 nanoribbons
Genhua Liu(刘根华), Pingguo Xiao(肖平国), Piaorong Xu(徐飘荣), Huiying Zhou(周慧英), Guanghui Zhou(周光辉). Chin. Phys. B, 2018, 27(1): 017304.
[14] Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2017, 26(9): 098509.
[15] Electronic transport properties of single-wall boron nanotubes
Xinyue Dai(代新月), Yi Zhou(周毅), Jie Li(李洁), Lishu Zhang(张力舒), Zhenyang Zhao(赵珍阳), Hui Li(李辉). Chin. Phys. B, 2017, 26(8): 087310.
No Suggested Reading articles found!