Special Issue:
SPECIAL TOPIC — Valleytronics
|
|
|
Transport properties of Hall-type quantum states in disordered bismuthene |
Jiaojiao Zhou(周娇娇)1, Jiangying Yu(余江应)1, Shuguang Cheng(成淑光)2,†, and Hua Jiang(江华)3,‡ |
1 Key Laboratory of Advanced Electronic Materials and Devices, School of Mathematics and Physics, Anhui Jianzhu University, Hefei 230601, China; 2 Department of Physics, Northwest University, Xi'an 710069, China; 3 School of Physical Science and Technology, Soochow University, Suzhou 215006, China |
|
|
Abstract Bismuthene, an inherently hexagonal structure characterized by a huge bulk gap, offers a versatile platform for investigating the electronic transport of various topological quantum states. Using nonequilibrium Green's function method and Landauer—Büttiker formula, we thoroughly investigate the transport properties of various Hall-type quantum states, including quantum spin Hall (QSH) edge states, quantum valley Hall kink (QVHK) states, and quantum spin—valley Hall kink (QSVHK) states, in the presence of various disorders. Based on the exotic transport features, a spin—valley filter, capable of generating a highly spin- and valley-polarized current, is proposed. The valley index and the spin index of the filtered QSVHK state are determined by the staggered potential and the intrinsic spin—orbit coupling, respectively. The efficiency of the spin—valley filter is supported by the spacial current distribution, the valley-resolved conductance, and the spin-resolved conductance. Compared with a sandwich structure for QSVHK, our proposed spin—valley filter can work with a much smaller size and is more accessible in the experiment.
|
Received: 09 December 2023
Revised: 19 January 2024
Accepted manuscript online: 05 February 2024
|
PACS:
|
71.15.-m
|
(Methods of electronic structure calculations)
|
|
73.20.-r
|
(Electron states at surfaces and interfaces)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
73.63.-b
|
(Electronic transport in nanoscale materials and structures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 12104012), the Natural Science Foundation of Anhui Province of China (Grant No. 2108085MB42), the Key Research and Development Plan of Anhui Province of China (Grant No. 202104a05020048), the Major Science and Technology Project of Anhui Province of China (Grant No. 2021e03020007), and the Doctor Foundation of Anhui Jianzhu University (Grant No. 2019QDZ45). |
Corresponding Authors:
Shuguang Cheng, Hua Jiang
E-mail: sgcheng@nwu.edu.cn;jianghuaphy@suda.edu.cn
|
Cite this article:
Jiaojiao Zhou(周娇娇), Jiangying Yu(余江应), Shuguang Cheng(成淑光), and Hua Jiang(江华) Transport properties of Hall-type quantum states in disordered bismuthene 2024 Chin. Phys. B 33 047105
|
[1] Haldane F D M 1988 Phys. Rev. Lett. 61 2015 [2] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 [3] Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S and Geim A K 2014 Science 346 448 [4] Sui M, Chen G, Ma L, Shan W Y, Tian D, Watanabe K, Taniguchi T, Jin X, Yao W, Di X D and Zhang Y 2015 Nat. Phys. 11 1027 [5] Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T and Tarucha S 1988 Nat. Phys. 11 1032 [6] Geisenhof F R, Winterer F, Seiler A M, Lenz J, Martin I and Weitz R T 2022 Nat. Commun. 95 226801[RefAutoNo] Cheng S G, Liu H, Jiang H, Sun Q F and Xie X C 2018 Phys. Rev. Lett. 121 156801 [7] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3015 [8] Yan B and Zhang S C 2012 Rep. Prog. Phys. 75 096501 [9] Murakami S, Nagaosa N and Zhang S C 2004 Phys. Rev. Lett. 93 156804 [10] Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 5806 [11] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 [13] Yao W, Xiao D and Niu Q 2008 Phys. Rev. B 77 235406 [14] Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B and Feng J 2012 Nat. Commun. 3 887[RefAutoNo] Cheng S G, Zhou J, Jiang H and Sun Q F 2016 New J. Phys. 18 103024[RefAutoNo] Yin L J, Jiang H, Qiao J B and He L 2016 Nat. Commun. 7 11760 [16] Ezawa M 2015 J. Phys. Soc. Jpn. 84 121003 [17] Jatiyanon K and Soodchomshom B 2018 Superlattices Microstruct. 120 540 [18] Ezawa M 2013 Phys. Rev. B 88 161406 [19] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109 [20] Aufray B, Kara A, Vizzini S, Oughaddou H, Lmacuteeandri C, Ealet B and Lay G L 2010 Appl. Phys. Lett. 96 183102 [21] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805 [22] Sichau J, Prada M, Anlauf T, Lyon T J, Bosnjak B, Tiemann L and Blick R H 2019 Phys. Rev. Lett. 122 046403 [23] Zhang S, Guo S, Chen Z, Wang Y, Gao H, Gmacuteomez-Herrero J, Ares P, Zamora F, Zhu Z and Zeng H 2018 Chem. Soc. Rev. 47 9821021 [24] Gui R, Jin H, Sun J, Jiang X and Sun Z 2019 J. Mater. Chem. A 7 25712 [25] Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W, Ni Z, Hao Y and Zeng H 2016 Nat. Commun. 7 13352 [26] Xu G, Zhou T, Scharf B and mcheckZutimacutec I 2020 Phys. Rev. Lett. 125 157402[RefAutoNo] Zhang S H, Yang W and Chang K 2018 Phys. Rev. B 97 085420[RefAutoNo] Cheng S G, Zhang R Z, Zhou J, Jiang H and Sun Q F 2018 Phys. Rev. B 97 085420 [27] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W, Thomale R, Schmäfer J and Claessen R 2017 Science 357 287[RefAutoNo] Isaeva A, Rasche B and Ruck M 2013 Phys. Status Solidi Rapid Res. Lett. 7 39[RefAutoNo] Rasche B, Isaeva A, Ruck M, Borisenko S, Zabolotnyy V, Bmüchner B, Koepernik K, Ortix C, Richter M and van den Brink J 2013 Nat. Mater. 12 422 [28] Song Z, Liu C C, Yang J, Han J, Ye M, Fu B, Yang Y, Niu Q, Lu J and Yao Y 2014 NPG Asia Mater. 6 e147 [29] Zhou T, Zhang J, Jiang H, mcheckZutimacutec I and Yang Z 2018 NPJ Quantum Mater. 3 39[RefAutoNo] Zhou J, Zhou T, Cheng S G, Jiang H and Yang Z 2019 Phys. Rev. B 99 195422[RefAutoNo] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809[RefAutoNo] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490 [30] Wang Y, Deng L, Wei Q, Wan Y, Liu Z, Lu X, Li Y, Bi L, Zhang L, Lu H, Chen H, Zhou P, Zhang L, Cheng Y, Zhao X, Ye Y, Huang W, Pennycook S J, Loh K P and Peng B 2020 Nano Lett. 20 2129 [31] Liu Z, Feng W, Xin H, Gao Y, Liu P, Yao Y, Wenggh H and Zhao J 2019 Mater. Horiz. 6 781 [32] Li J, Wang K, McFaul K J, Zern Z, Ren Y, Watanabe K, Taniguchi T, Qiao Z and Zhu J 2016 Nat. Nanotechnol. 11 1060 [33] Pan H, Li X, Zhang F and Yang S A 2015 Phys. Rev. B 92 041404 [35] Zhou T, Zhang J, Xue Y, Zhao B, Zhang H, Jiang H and Yang Z 2016 Phys. Rev. B 94 235449[RefAutoNo] Mannix A J, Kiraly B, Hersam M C and Guisinger N P 2017 Nat. Rev. Chem. 1 0014[RefAutoNo] Datta S 1995 Electronic transport in mesoscopic systems (Cambridge:Cambridge University Press) pp. 117——174 [36] Ando T 1989 Phys. Rev. B 40 5325 [37] Lee D H and Joannopoulos J D 1981 Phys. Rev. B 23 4997 [38] Sancho M P L, Sancho J M L and Rubio J 1984 J. Phys. F 14 1205 [39] Sancho M P L, Sancho J M L and Rubio J 1985 J. Phys. F 15 851[RefAutoNo] Jiang H, Wang L, Sun Q F and Xie X C 2009 Phys. Rev. B 80 165316[RefAutoNo] Zhang Y, Hu J P, Bernevig B A, Wang X R, Xie X C and Liu W M 2008 Phys. Rev. B 78 155413[RefAutoNo] Zhang J, Zhang Z Q, Cheng S G and Jiang H 2022 Phys. Rev. B 106 195304[RefAutoNo] Ando T 1991 Phys. Rev. B 44 8017[RefAutoNo] Zhang S H, Yang W and Chang K 2017 Phys. Rev. B 95 075421 [41] Zhou T, Cheng S, Schleenvoigt M, Schmüffelgen P, Jiang H, Yang Z and mcheckZutimacutec I 2021 Phys. Rev. Lett. 127 116402 [43] Kmönig M, Wiedmann S, Brmü$une C, Roth A, Buhmann H, Molenkamp L W, Qi X L and Zhang S C 2007 Science 318 766 [44] Culcer D, Keser A C, Li Y and Tkachov G 2020 2D Mater. 7 022007 [42] Ju L, Shi Z, Nair N, Lv Y, Jin C, Jr J V, Ojeda-Aristizabal C, Bechtel H A, Martin M C, Zettl A, Analytis J and Wang F 2015 Nature 520 650[RefAutoNo] Rycerz A, Tworzydlo J and Beenakker C 2007 Nat. Phys. 3 172[RefAutoNo] Liu Y, Song J, Li Y, Liu Y and Sun Q F 2013 Phys. Rev. B 87 195445[RefAutoNo] da Costa D R, Chaves A, Sena S H R, Farias G A and Peeters F M 2015 Phys. Rev. B 92 045417 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|