|
|
|
Molecular simulation study on phase separation of immunoglobulin G |
| Lv-Meng Hu(胡吕梦)1, Yuan-Qiang Chen(陈远强)1, Hong-Ming Ding(丁泓铭)1,†, and Yu-Qiang Ma(马余强)2,3 |
1 Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China; 2 National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China; 3 Jiangsu Physical Science Research Center, Nanjing 210093, China |
|
|
|
|
Abstract Understanding the liquid-liquid phase separation (LLPS) of immunoglobulin G (IgG) is crucial, as it profoundly influences IgG's biological activity and stability. In this study, we employed coarse-grained molecular dynamics simulations to systematically investigate the phase separation behavior of IgG. We first constructed two types of IgG models: all-pair IgG model and partial-pair IgG model, and compared the coexistence curve from our simulations with experimental data. Our results showed that the partial-pair IgG model aligns better with the experimental critical temperature and critical density. Using this model, we then calculated the temperature-dependent variations of IgG's radius of gyration, surface tension, viscosity, etc. More importantly, we demonstrated that variations in the interaction strengths among IgG molecules significantly influence their phase separation behavior. Specifically, a higher standard deviation of interaction strength at different temperatures is found to lead to more stable phase-separated states. Furthermore, we observed that the introduction of repulsive polymers and strongly attractive polymers consistently enhances IgG phase separation, while weakly attractive polymers exhibit a dual regulatory effect on the phase separation. Overall, this study provides valuable insights into the mechanisms governing IgG phase behavior, with potential implications for optimizing biopharmaceutical products.
|
Received: 02 April 2025
Revised: 28 April 2025
Accepted manuscript online: 07 May 2025
|
|
PACS:
|
87.10.Tf
|
(Molecular dynamics simulation)
|
| |
64.75.-g
|
(Phase equilibria)
|
| |
87.15.-v
|
(Biomolecules: structure and physical properties)
|
| |
87.15.A-
|
(Theory, modeling, and computer simulation)
|
|
| Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12222506, 12347102, and 12174184). |
Corresponding Authors:
Hong-Ming Ding
E-mail: dinghm@suda.edu.cn
|
Cite this article:
Lv-Meng Hu(胡吕梦), Yuan-Qiang Chen(陈远强), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强) Molecular simulation study on phase separation of immunoglobulin G 2025 Chin. Phys. B 34 088701
|
[1] Edelman G M 1973 Science 180 830 [2] Rosenberg A S 2006 AAPS J. 8 59 [3] Vidarsson G, Dekkers G and Rispens T 2014 Front. Immunol. 5 520 [4] Hatch H W, Bergonzo C, Blanco M A, Yuan G, Grudinin S, Lund M, Curtis J E, Grishaev A V, Liu Y and Shen V K 2024 J. Chem. Phys. 161 094113 [5] Dumetz A C, Chockla A M, Kaler EWand Lenhoff A M 2008 Biophys. J. 94 570 [6] Mason B D, Zhang-Van Enk J, Zhang L, Remmele R L Jr and Zhang J 2010 Biophys. J. 99 3792 [7] Yan Z S, Ma Y Q and Ding H M 2024 J. Chem. Phys. 160 064907 [8] Ren C L, Shan Y, Zhang P, Ding H M and Ma Y Q 2022 Sci. Adv. 8 eabo7885 [9] Pantuso E, Mastropietro T F, Briuglia M L, Gerard C J J, Curcio E, Ter Horst J H, Nicoletta F P and Di Profio G 2020 Sci. Rep. 10 8902 [10] Larson N R,Wei Y, Cruz T A, Esfandiary R, Kalonia C K, Forrest M L and Middaugh C R 2023 J. Pharm. Sci. 112 680 [11] Likhtman A E 2005 Macromolecules 38 6128 [12] Nikoubashman A and Howard M P 2017 Macromolecules 50 8279 [13] Demeule B, Lawrence M J, Drake A F, Gurny R and Arvinte T 2007 Biochim. Biophys. Acta 1774 146 [14] Dorsaz N, Thurston G M, Stradner A, Schurtenberger P and Foffi G 2011 Soft Matter 7 1763 [15] Sibanda N, Shanmugam R K and Curtis R 2023 Mol. Pharm. 20 2662 [16] Herling T W, Invernizzi G, Ausserwöger H, Bjelke J R, Egebjerg T, Lund S, Lorenzen N and Knowles T P J 2023 Proc. Natl. Acad. Sci. USA 120 e2306700120 [17] Ausserwöger H, Krainer G, Welsh T J, Thorsteinson N, De Csilléry E, Sneideris T, Schneider M M, Egebjerg T, Invernizzi G, Herling T W, Lorenzen N and Knowles T P J 2023 Proc. Natl. Acad. Sci. USA 120 e2210332120 [18] Chen S, Lau H, Brodsky Y, Kleemann G R and Latypov R F 2010 Protein Sci. 19 1191 [19] Nishi H, Miyajima M, Nakagami H, Noda M, Uchiyama S and Fukui K 2010 Pharm. Res. 27 1348 [20] Ahamed T, Esteban B N A, Ottens M, Van Dedem G W K, Van Der Wielen L A M, Bisschops M A T, Lee A, Pham C and Thömmes J 2007 Biophys. J. 93 610 [21] Mason B D, Zhang L, Remmele R L Jr and Zhang J 2011 J. Pharm. Sci. 100 4587 [22] Nishi H, Miyajima M,Wakiyama N, Kubota K, Hasegawa J, Uchiyama S and Fukui K 2011 J. Biosci. Bioeng. 112 326 [23] Trilisky E, Gillespie R, Osslund T D and Vunnum S 2011 Biotechnol. Prog. 27 1054 [24] Wang Y, Lomakin A, Latypov R F, Laubach J P, Hideshima T, Richardson P G, Munshi N C, Anderson K C and Benedek G B 2013 J. Chem. Phys. 139 121904 [25] Zheng Y, Li Q, Freiberger M I, Song H, Hu G, Zhang M, Gu R and Li J 2024 J. Chem. Inf. Model. 64 6768 [26] Janc T, Korb J P, Lukšič M, Vlachy V, Bryant R G, Mériguet G, Malikova N and Rollet A L 2021 J. Phys. Chem. B 125 8673 [27] Rao V S, Srinivas K, Sujini G N and Kumar G N S 2014 J. Proteomics 2014 147648 [28] Jones S and Thornton J M 1996 Proc. Natl. Acad. Sci. USA 93 13 [29] Nooren I M A and Thornton J M 2003 Embo J. 22 3486 [30] Thompson R W Jr, Latypov R F, Wang Y, Lomakin A, Meyer J A, Vunnum S and Benedek G B 2016 J. Chem. Phys. 145 185101 [31] Zhang F, Skoda M W A, Jacobs R M J, Martin R A, Martin C M and Schreiber F 2007 J. Phys. Chem. B 111 251 [32] Antosiewicz J, Mccammon J A and Gilson M K 1994 J. Mol. Biol. 238 415 [33] Voth G A 2017 Acc. Chem. Res. 50 594 [34] Heyman B 2003 Immunol. Lett. 88 157 [35] Brandt J P, Patapoff T W and Aragon S R 2010 Biophys. J. 99 905 [36] Chaudhri A, Zarraga I E, Kamerzell T J, Brandt J P, Patapoff TW, Shire S J and Voth G A 2012 J. Phys. Chem. B 116 8045 [37] Davies D R and Cohen G H 1996 Proc. Natl. Acad. Sci. USA 93 7 [38] Wilson I A and Stanfield R L 1994 Curr. Opin. Struct. Biol. 4 857 [39] Abhinandan K R and Martin A C R 2008 Mol. Immunol. 45 3832 [40] Chothia C, Lesk A M, Tramontano A, Levitt M, Smith-Gill S J, Air G, Sheriff S, Padlan E A, Davies D, Tulip W R, Colman P M, Spinelli S, Alzari P M and Poljak R J 1989 Nature 342 877 [41] Sivasubramanian A, Sircar A, Chaudhury S and Gray J J 2009 Proteins 74 497 [42] Oganesyan V, Damschroder M M, Leach W, Wu H and Dallácqua W F 2008 Mol. Immunol. 45 1872 [43] Oganesyan V, Damschroder M M, Woods R M, Cook K E, Wu H and Dallácqua W F 2009 Mol. Immunol. 46 1750 [44] Hirschmann F, Lopez H, Roosen-Runge F, Seydel T, Schreiber F and Oettel M 2018 J. Chem. Phys. 148 084112 [45] Harris J M, Martin N E and ModiM2001 Clin. Pharmacokinet. 40 539 [46] Brzezinski M, Argudo P G, Scheidt T, Yu M, Lemke E A, Michels J J and Parekh S H 2023 bioRxiv 570970 [47] Chudoba R, Heyda J and Dzubiella J 2017 J. Chem. Theory Comput. 13 6317 [48] Wang Y, Latypov R F, Lomakin A, Meyer J A, Kerwin B A, Vunnum S and Benedek G B 2014 Mol. Pharm. 11 1391 [49] Fetahaj Z, Jaworek M W, Oliva R and Winter R 2022 Chem. Eur. J. 28 e202201658 [50] Cruz R D C, Martins R J, Cardoso M J E D M and Barcia O E 2009 J. Solut. Chem. 38 957 [51] Silmore K S, Howard M P and Panagiotopoulos A Z 2017 Mol. Phys. 115 320 [52] Dignon G L, Zheng W, Kim Y C, Best R B and Mittal J 2018 PLoS Comput. Biol. 14 e1005941 [53] Thompson A P, Aktulga H M, Berger R, Bolintineanu D S, Brown W M, Crozier P S, Veld P J, Kohlmeyer A, Moore S G, Nguyen T D, Shan R, Stevens M J, Tranchida J, Trott C and Plimpton S J 2022 Comput. Phys. Commun. 271 108171 [54] Wang H, Kelley F M, Milovanovic D, Schuster B S and Shi Z 2021 Biophys. Rep. 1 100011 [55] Alshareedah I, Thurston G M and Banerjee P R 2021 Biophys. J. 120 1161 [56] Kirkwood J G and Buff F P 1949 J. Chem. Phys. 17 338 [57] Lee H, De Vries A H, Marrink S J and Pastor R W 2009 J. Phys. Chem. B 113 13186 [58] Humbert M T, Zhang Y and Maginn E J 2019 J. Chem. Inf. Model. 59 1301 [59] Tejedor A R, Collepardo-Guevara R, Ramírez J and Espinosa J R 2023 J. Phys. Chem. B 127 4441 [60] Ramírez J, Sukumaran S K, Vorselaars B and Likhtman A E 2010 J. Chem. Phys. 133 154103 [61] Boudara V a H, Read D J and Ramírez J 2020 J. Rheol. 64 709 [62] Sundaravadivelu Devarajan D, Wang J, Szała-Mendyk B, Rekhi S, Nikoubashman A, Kim Y C and Mittal J 2024 Nat. Commun. 15 1912 [63] Kastelic M and Vlachy V 2018 J. Phys. Chem. B 122 5400 [64] Sagawa T, Oda M, Morii H, Takizawa H, Kozono H and Azuma T 2005 Mol. Immunol. 42 9 [65] Raut A S and Kalonia D S 2016 Mol. Pharm. 13 774 [66] Sun G, Wang Y, Lomakin A, Benedek G B, Stanley H E, Xu L and Buldyrev S V 2016 J. Chem. Phys. 145 194901 [67] Yang L, Biswas M E and Chen P 2003 Biophys. J. 84 509 [68] Widom B 1965 J. Chem. Phys. 43 3892 [69] Williamson A R 1976 Annu. Rev. Biochem. 45 467 [70] Henderson R, Watts B E, Ergin H N, Anasti K, Parks R, Xia S M, Trama A, Liao H X, Saunders K O, Bonsignori M,Wiehe K, Haynes B F and Alam S M 2019 Nat. Commun. 10 654 [71] Annunziata O, Asherie N, Lomakin A, Pande J, Ogun O and Benedek G B 2002 Proc. Natl. Acad. Sci. USA 99 14165 [72] Wang Y and Annunziata O 2007 J. Phys. Chem. B 111 1222 [73] Arakawa T and Timasheff S N 1985 Biochemistry 24 6756 [74] Bhat R and Timasheff S N 1992 Protein Sci. 1 1133 [75] Nobeyama T, Furuki T and Shiraki K 2023 Langmuir 39 17043 |
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|