Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(5): 056102    DOI: 10.1088/1674-1056/adc7f5
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Ultrahigh concentration of NV- centers embedded in the CVD epi-diamond layer near the interface with an HPHT diamond substrate

Yuanjie Yang(杨元杰), Shengran Lin(林盛然), Jiaxin Zhao(赵嘉昕), Changfeng Weng(翁长风), Liren Lou(楼立人), Wei Zhu(祝巍)†, and Guanzhong Wang(王冠中)‡
Department of Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  The negatively charged nitrogen vacancy (NV) center ensemble in as-grown chemical vapor deposition (CVD) diamond is a promising candidate for quantum sensing due to its long coherence time and excellent optical properties. However, achieving a high concentration of NV centers in as-grown CVD diamond remains a critical challenge, which constrains the performance of NV based sensors. In this study, we observe that NV center formation efficiency is significantly enhanced during the initial growth phase, with a coherence time T2 of 1.1 μs. These findings demonstrate that high-concentration NV centers can be achieved in as-grown diamonds, greatly enhancing their utility in high-performance magnetometers and quantum sensing.
Keywords:  interface      high concentration      nitrogen vacancy centers      chemical vapor deposition (CVD)      diamond  
Received:  19 February 2025      Revised:  24 March 2025      Accepted manuscript online:  02 April 2025
PACS:  61.72.J- (Point defects and defect clusters)  
  81.05.ug (Diamond)  
  68.35.Ct (Interface structure and roughness)  
  71.55.-i (Impurity and defect levels)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374280 and 50772110).
Corresponding Authors:  Wei Zhu, Guanzhong Wang     E-mail:  zhuw@ustc.edu.cn;gzwang@ustc.edu.cn

Cite this article: 

Yuanjie Yang(杨元杰), Shengran Lin(林盛然), Jiaxin Zhao(赵嘉昕), Changfeng Weng(翁长风), Liren Lou(楼立人), Wei Zhu(祝巍), and Guanzhong Wang(王冠中) Ultrahigh concentration of NV- centers embedded in the CVD epi-diamond layer near the interface with an HPHT diamond substrate 2025 Chin. Phys. B 34 056102

[1] Takeuchi M, Yasuoka M, Ishii M, Ohtani N and Shikata S 2023 Diam. Relat. Mater. 140 110510
[2] Zou D, Shen S, Li L, Wang Q, Liang K, Chen L, Wu G and Shen W 2024 Phys. B 676 415614
[3] Bai R, Zhu X, Yang F, Gao T, Wang Z, Yu L, Wang J, Zhou L and Du G 2022 Chin. Phys. B 31 074203
[4] Wang J, Feng F, Zhang J, Chen J, Zheng Z, Guo L, Zhang W, Song X, Guo G, Fan L, Zou C, Lou L, Zhu W and Wang G 2015 Phys. Rev. B 91 155404
[5] Xu K, Xie T, Li Z, Xu X, Wang M, Ye X, Kong F, Geng J, Duan C, Shi F and Du J 2017 Phys. Rev. Lett. 118 130504
[6] Masuyama Y, Suzuki K, Hekizono A, Iwanami M, Hatano M, Iwasaki T and Ohshima T 2021 Sensors 21 977
[7] Budakian R, Finkler A, Eichler A, Poggio M, Degen C L, Tabatabaei S, Lee I, Hammel P C, Eugene S P, Taminiau T H, Walsworth R L, London P, Bleszynski Jayich A, Ajoy A, Pillai A, Wrachtrup J, Jelezko F, Bae Y, Heinrich A J, Ast C R, Bertet P, Cappellaro P, Bonato C, Altmann Y and Gauger E 2024 Nanotechnology 35 412001
[8] Atatüre M, Englund D, Vamivakas N, Lee S Y and Wrachtrup J 2018 Nat. Rev. Mater. 3 38
[9] Delle Donne C, Iuliano M, Van Der Vecht B, Ferreira G M, Jirovská H, Van Der Steenhoven T J W, Dahlberg A, Skrzypczyk M, Fioretto D, Teller M, Filippov P, Montblanch A R P, Fischer J, Van Ommen H B, Demetriou N, Leichtle D, Music L, Ollivier H, Te Raa I, Kozlowski W, Taminiau T H, Pawełczak P, Northup T E, Hanson R and Wehner S 2025 Nature 639 321
[10] Shandilya P K, Flagan S, Carvalho N C, Zohari E, Kavatamane V K, Losby J E and Barclay P E 2022 J. Light. Technol. 40 7538
[11] Basu T, Patra A, Murali M, Saini M, Banerjee A and Som 2025 ACS Omega 10 2372
[12] Liu X, Cui J, Sun F, Song X, Feng F, Wang J, Zhu W, Lou L and Wang G 2013 Appl. Phys. Lett. 103 143105
[13] Hei L F, Zhao Y, Wei J J, Liu J L, Li C M, Tang W Z and Lu F X 2016 Diam. Relat. Mater. 69 33
[14] Samlenski R, Haug C, Brenn R, Wild C, Locher R and Koidl P 1995 Appl. Phys. Lett. 67 2798
[15] Feng F, Wang J, Zhang W, Zhang J, Lou L, Zhu W and Wang G 2016 Appl. Phys. A 122 944
[16] Yokota Y, Kawarada H and Hiraki A 1990 Jpn. J. Appl. Phys. 29 L2232
[17] Romach Y, Müller C, Unden T, Rogers L J, Isoda T, Itoh K M, Markham M, Stacey A, Meijer J, Pezzagna S, Naydenov B, McGuinness L P, Bar-Gill N and Jelezko F 2015 Phys. Rev. Lett. 114 017601
[18] Hounsome L S, Jones R, Martineau P M, Fisher D, Shaw M J, Briddon P R and Ö berg S 2006 Phys. Rev. B 73 125203
[19] Ohno K, Joseph Heremans F, Bassett L C, Myers B A, Toyli D M, Bleszynski Jayich A C, Palmstrøm C J and Awschalom D D 2012 Appl. Phys. Lett. 101 082413
[20] Tallaire A, Achard J, Silva F, Sussmann R S, Gicquel A and Rzepka E 2004 Phys. Status Solidi A 201 2419
[21] Woods G S, Van Wyk J A and Collins A T 1990 Philos. Mag. B 62 589
[22] Liu J L, Zheng Y T, Lin L Z, Zhao Y, Chen L X, Wei J J, Wang J J, Guo J C, Feng Z H and Li C M 2018 J. Mater. Sci. 53 13030
[23] Tallaire A, Mayer L, Brinza O, Pinault-Thaury M A, Debuisschert T and Achard J 2017 Appl. Phys. Lett. 111 143101
[24] Anon
[25] Martineau P M, Lawson S C, Taylor A J, Quinn S J, Evans D J F and Crowder M J 2004 Gems Gemol. 40 2
[26] Edmonds A M, D’Haenens-Johansson U F S, Cruddace R J, NewtonM E, Fu K M C, Santori C, Beausoleil R G, Twitchen D J and Markham M L 2012 Phys. Rev. B 86 035201
[27] Bou P, Vandenbulcke L, Herbin R and Hillion F 1992 J. Mater. Res. 7 2151
[28] Dréau A, Lesik M, Rondin L, Spinicelli P, Arcizet O, Roch J F and Jacques V 2011 Phys. Rev. B 84 195204
[29] Hu X, Liu G Q, Xu Z C and Pan X Y 2012 Chin. Phys. Lett. 29 024210
[30] Dutt M V G, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov A S, Hemmer P R and Lukin M D 2007 Science 316 1312
[31] Ding S, Zhang J, Su K, Ren Z, Chen J, Yang Z, Zhang J and Hao Y 2024 Sci. China Mater. 67 2329
[32] Acosta V M, Bauch E, Ledbetter M P, Santori C, Fu K M C, Barclay P E, Beausoleil R G, Linget H, Roch J F, Treussart F, Chemerisov S, Gawlik W and Budker D 2009 Phys. Rev. B 80 115202
[33] Kleinsasser E E, Stanfield M M, Banks J K Q, Zhu Z, Li W D, Acosta V M, Watanabe H, Itoh K M and Fu K M C 2016 Appl. Phys. Lett. 108 202401
[34] Maertz B J, Wijnheijmer A P, Fuchs G D, Nowakowski M E and Awschalom D D 2010 Appl. Phys. Lett. 96 092504
[35] Le Sage D, Pham L M, Bar-Gill N, Belthangady C, LukinMD, Yacoby A and Walsworth R L 2012 Phys. Rev. B 85 121202
[1] Pressure-induced superconductivity in Bi-doped BaFe2(As1-xBix)2 single crystals
Chang Su(苏畅), Wuhao Chen(陈吴昊), Wenjing Cheng(程文静), Jiabin Si(司佳斌), Qunfei Zheng(郑群飞), Jinlong Zhu(朱金龙), Lingyi Xing(邢令义), and Ying Liu(刘影). Chin. Phys. B, 2025, 34(6): 067403.
[2] Synthesis of two-dimensional diamond by phase transition from graphene at atmospheric pressure
Songyang Li(李松洋), Zhiguang Zhu(朱志光), Youzhi Zhang(张有志), Chengke Chen(陈成克), and Xiaojun Hu(胡晓君). Chin. Phys. B, 2025, 34(5): 058101.
[3] Fabrication of two-dimensional van der Waals moiré superlattices
Zihao Wan(万子豪), Chao Wang(王超), Hang Zheng(郑航), Wenna Tang(唐文娜), Zihao Fu(付梓豪), Weilin Liu(刘伟林), Zhenjia Zhou(周振佳), Jun Li(李骏), Guowen Yuan(袁国文), and Libo Gao(高力波). Chin. Phys. B, 2025, 34(4): 047302.
[4] Atomic origin of minor alloying element effect on glass forming ability of metallic glass
Shan Zhang(张珊), Qingan Li(李庆安), Yong Yang(杨勇), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2025, 34(3): 036105.
[5] Disentangling electronic and phononic thermal transport across two-dimensional interfaces
Linxin Zhai(翟麟鑫) and Zhiping Xu(徐志平). Chin. Phys. B, 2025, 34(2): 027202.
[6] Generation of macroscopic entanglement in ensemble systems based on silicon vacancy centers
Jian-Zhuang Wu(武建壮), Ying Xi(奚滢), Bo-Ya Li(李博雅), Lian-E Lu(芦连娥), and Yong-Hong Ma(马永红). Chin. Phys. B, 2024, 33(9): 090308.
[7] Dendritic tip selection during solidification of alloys: Insights from phase-field simulations
Qingjie Zhang(张清杰), Hui Xing(邢辉), Lingjie Wang(王灵杰), and Wei Zhai(翟薇). Chin. Phys. B, 2024, 33(9): 096103.
[8] Spin wave resonance frequency in bilayer ferromagnetic films with the biquadratic exchange interaction
Xiaojie Zhang(张晓洁), Yuting Wang(王雨汀), Yanqiu Chang(常艳秋), Huan Wang(王焕), Jianhong Rong(荣建红), and Guohong Yun(云国宏). Chin. Phys. B, 2024, 33(9): 097601.
[9] Diamond-based electron emission: Structure, properties and mechanisms
Liang-Xue Gu(顾梁雪), Kai Yang(杨凯), Yan Teng(滕妍), Wei-Kang Zhao(赵伟康), Geng-You Zhao(赵耕右), Kang-Kang Fan(凡康康), Bo Feng(冯博), Rong Zhang(张荣), You-Dou Zheng(郑有炓), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Kun Tang(汤琨), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2024, 33(9): 098102.
[10] Interface and mechanical degradation mechanisms of the silicon anode in sulfide-based solid-state batteries at high temperatures
Qiuchen Wang(王秋辰), Yuli Huang(黄昱力), Jing Xu(许晶), Xiqian Yu(禹习谦), Hong Li(李泓), and Liquan Chen(陈立泉). Chin. Phys. B, 2024, 33(8): 088201.
[11] Micron-sized fiber diamond probe for quantum precision measurement of microwave magnetic field
Wen-Tao Lu(卢文韬), Sheng-Kai Xia(夏圣开), Ai-Qing Chen(陈爱庆), Kang-Hao He(何康浩), Zeng-Bo Xu(许增博), Yi-Han Chen(陈艺涵), Yang Wang(汪洋), Shi-Yu Ge(葛仕宇), Si-Han An(安思瀚), Jian-Fei Wu(吴建飞), Yi-Han Ma(马艺菡), and Guan-Xiang Du(杜关祥). Chin. Phys. B, 2024, 33(8): 080305.
[12] Synthesis and nitrogen content regulation of diamond in a high-pressure hydrogen-rich environment
Guofeng Huang(黄国锋), Liangchao Chen(陈良超), and Chao Fang(房超). Chin. Phys. B, 2024, 33(6): 068102.
[13] Thermal transport in composition graded silicene/germanene heterostructures
Zengqiang Cao(曹增强), Chaoyu Wang(王超宇), Honggang Zhang(张宏岗), Bo You(游波), and Yuxiang Ni(倪宇翔). Chin. Phys. B, 2024, 33(4): 044402.
[14] Databases of 2D material-substrate interfaces and 2D charged building blocks
Jun Deng(邓俊), Jinbo Pan(潘金波), and Shixuan Du(杜世萱). Chin. Phys. B, 2024, 33(2): 026101.
[15] Effect of surface modification on the radiation stability of diamond ohmic contacts
Lian-Xi Mu(牟恋希), Shang-Man Zhao(赵上熳), Peng Wang(王鹏), Xiao-Lu Yuan(原晓芦), Jin-Long Liu(刘金龙), Zhi-Fu Zhu(朱志甫), Liang-Xian Chen(陈良贤), Jun-Jun Wei(魏俊俊), Xiao-Ping Ou-Yang(欧阳晓平), and Cheng-Ming Li(李成明). Chin. Phys. B, 2024, 33(2): 026801.
No Suggested Reading articles found!