Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 087105    DOI: 10.1088/1674-1056/add00b
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ground state of electron-doped t-t0-J model on cylinders: An investigation of finite size and boundary condition effects

Yang Shen(沈阳)1, Xiangjian Qian(钱湘坚)1, and Mingpu Qin(秦明普)1,2,†
1 Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
2 Hefei National Laboratory, Hefei 230088, China
Abstract  We perform a comprehensive study of the electron-doped $t$-$t'$-$J$ model on cylinders with density matrix renormalization group (DMRG). We conduct a systematic study on the finite-size and boundary condition effects on $t$-$t'$-$J$ model on cylinders. Periodic and anti-periodic boundary conditions are implemented along the circumference direction, with the system's width extending up to as large as 8 lattice units. We study doping levels of $1/6$, $1/8$, and $1/12$, which represent the most interesting region in the phase diagram of electron-doped cuprates. We find that for width-4 and width-6 systems, the ground state for fixed doping switches between anti-ferromagnetic Neel state and stripe state under different boundary conditions and system widths, indicating the presence of large finite size effect in the $t$-$t'$-$J$ model. We also have a careful analysis of the d-wave pairing correlations which also change quantitatively with boundary conditions and widths of the system. However, the pairing correlations are enhanced when the system becomes wider for all dopings, suggesting the existence of possible long-range superconducting order in the thermodynamic limit. The width-8 results are found to be dependent on the starting state in the DMRG calculation for the kept states we can reach. For the width-8 system, only Neel (stripe) state can be stabilized in DMRG calculation for $1/12$ ($1/6$) doping, while both stripe and Neel states are stable in the DMRG sweep for $1/8$ doping, regardless of the boundary conditions. These results indicate that $1/8$ doping is likely to lie on the boundary of a phase transition between the Neel phase with lower doping and the stripe phase with higher doping, consistent with the previous study. The sensitivity of the ground state on boundary conditions and size observed for narrow systems is similar to that found in the $t'$-Hubbard model, where the $t'$ term introduces frustration and makes the stripe state fragile. The study of different boundary conditions provides a useful tool to check the finite size effect in the future DMRG calculations.
Keywords:  $t$-$t'$-$J$ model      finite-size effect      boundary conditions      DMRG      superconductivity  
Received:  20 February 2025      Revised:  22 April 2025      Accepted manuscript online:  24 April 2025
PACS:  71.10.Fd (Lattice fermion models (Hubbard model, etc.))  
  74.72.-h (Cuprate superconductors)  
  64.60.an (Finite-size systems)  
  05.10.Cc (Renormalization group methods)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFA1405400), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301902), the National Natural Science Foundation of China (Grant No. 12274290), and the sponsorship from Yangyang Development Fund.
Corresponding Authors:  Mingpu Qin     E-mail:  qinmingpu@sjtu.edu.cn

Cite this article: 

Yang Shen(沈阳), Xiangjian Qian(钱湘坚), and Mingpu Qin(秦明普) Ground state of electron-doped t-t0-J model on cylinders: An investigation of finite size and boundary condition effects 2025 Chin. Phys. B 34 087105

[1] Hubbard J 1963 Proc. R. Soc. Lond. Ser. A 276 238
[2] Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759
[3] Qin M, Schäfer T, Andergassen S, Corboz P and Gull E 2022 Annu. Rev. Condens. Matter Phys. 13 275
[4] Arovas D P, Berg E, Kivelson S A and Raghu S 2022 Annu. Rev. Condens. Matter Phys. 13 239
[5] LeBlanc J P F, Antipov A E, Becca F, Bulik I W, Chan G K L, Chung C M, Deng Y, Ferrero M, Henderson T M, Jiménez-Hoyos C A, Kozik E, Liu X W, Millis A J, Prokofév N V, Qin M, Scuseria G E, Shi H, Svistunov B V, Tocchio L F, Tupitsyn I S, White S R, Zhang S, Zheng B X, Zhu Z and Gull E 2015 Phys. Rev. X 5 041041
[6] Corboz P, Rice T M and Troyer M 2014 Phys. Rev. Lett. 113 046402
[7] Corboz P, White S R, Vidal G and Troyer M 2011 Phys. Rev. B 84 041108
[8] Chou C P and Lee T K 2010 Phys. Rev. B 81 060503
[9] Scalapino D J 2012 Rev. Mod. Phys. 84 1383
[10] Dagotto E 1994 Rev. Mod. Phys. 66 763
[11] Anderson P W 1987 Science 235 1196
[12] Keimer B, Kivelson S A, Norman M R, Uchida S and Zaanen J 2015 Nature 518 179
[13] Zheng B X, Chung C M, Corboz P, Ehlers G, Qin M P, Noack R M, Shi H, White S R, Zhang S and Chan G K L 2017 Science 358 1155
[14] Xu H, Shi H, Vitali E, Qin M and Zhang S 2022 Phys. Rev. Res. 4 013239
[15] Qin M, Chung C M, Shi H, Vitali E, Hubig C, Schollwöck U, White S R and Zhang S 2020 Phys. Rev. X 10 031016
[16] Andersen O, Liechtenstein A, Jepsen O and Paulsen F 1995 J. Phys. Chem. Solids 56 1573
[17] Hirayama M, Yamaji Y, Misawa T and Imada M 2018 Phys. Rev. B 98 134501
[18] White S R and Scalapino D J 1999 Phys. Rev. B 60 R753
[19] Martins G B, Xavier J C, Gazza C, Vojta M and Dagotto E 2000 Phys. Rev. B 63 014414
[20] Martins G B, Xavier J C, Arrachea L and Dagotto E 2001 Phys. Rev. B 64 180513
[21] Jiang Y F, Zaanen J, Devereaux T P and Jiang H C 2020 Phys. Rev. Res. 2 033073
[22] Dodaro J F, Jiang H C and Kivelson S A 2017 Phys. Rev. B 95 155116
[23] Chung C M, Qin M, Zhang S, Schollwöck U and White S R 2020 Phys. Rev. B 102 041106
[24] Huang E W, Mendl C B, Jiang H C, Moritz B and Devereaux T P 2018 npj Quantum Mater. 3 22
[25] Gong S, Zhu W and Sheng D N 2021 Phys. Rev. Lett. 127 097003
[26] Jiang H C and Kivelson S A 2021 Phys. Rev. Lett. 127 097002
[27] Jiang S, Scalapino D J and White S R 2021 Proc. Natl. Acad. Sci. USA 118 e2109978118
[28] Lu X, Zhang J X, Gong S S, Sheng D and Weng Z Y 2024 Phys. Rev. B 110 165127
[29] Lu X, Chen F, Zhu W, Sheng D N and Gong S S 2024 Phys. Rev. Lett. 132 066002
[30] Jiang S, Scalapino D J and White S R 2022 Phys. Rev. B 106 174507
[31] Marino V, Becca F and Tocchio L F 2022 SciPost Phys. 12 180
[32] Ponsioen B, Chung S S and Corboz P 2019 Phys. Rev. B 100 195141
[33] Chen Q, Qiao L, Zhang F and Zhu Z 2019 Phys. Rev. B 110 045134
[34] Chen F, Haldane F D M and Sheng D N 2019 Proc. Natl. Acad. Sci. USA 122 e2420963122
[35] Jiang H C and Devereaux T P 2019 Science 365 1424
[36] White S R and Scalapino D J 2009 Phys. Rev. B 79 220504
[37] Tohyama T and Maekawa S 1994 Phys. Rev. B 49 3596
[38] Tohyama T 2004 Phys. Rev. B 70 174517
[39] Himeda A, Kato T and Ogata M 2002 Phys. Rev. Lett. 88 117001
[40] Xu H, Chung C M, Qin M, Schollwöck U, White S R and Zhang S 2024 Science 384 eadh7691
[41] White S R 1992 Phys. Rev. Lett. 69 2863
[42] White S R 1993 Phys. Rev. B 48 10345
[43] Schollwöck U 2011 Ann. Phys. 326 96
[44] Shen Y, Zhang G M and Qin M 2023 Phys. Rev. B 108 165113
[45] Dolfi M, Bauer B, Keller S and Troyer M 2015 Phys. Rev. B 92 195139
[46] Gannot Y and Kivelson S A 2023 Phys. Rev. B 107 075127
[47] Our in-house DMRG code is developed with TensorKit package at https://github.com/Jutho/TensorKit.jl
[1] Strain tuning of charge density wave and Mott-insulating states in monolayer VTe2
Wenqian Tu(涂文倩), Run Lv(吕润), Dingfu Shao(邵定夫), Yuping Sun(孙玉平), and Wenjian Lu(鲁文建). Chin. Phys. B, 2025, 34(9): 097103.
[2] Pressure-stabilized Li2K electride with superconducting behavior
Xiao-Zhen Yan(颜小珍), Quan-Xian Wu(邬泉县), Lei-Lei Zhang(张雷雷), and Yang-Mei Chen(陈杨梅). Chin. Phys. B, 2025, 34(9): 097405.
[3] Heterogeneous TiC-based composite ceramics with high toughness
Xiaoci Ma(马孝慈), Yufei Ge(葛雨非), Yutong Hou(侯语同), Keyu Shi(施柯羽), Jiaqi Zhang(张佳琪), Gaoping Yue(岳高平), Qiang Tao(陶强), and Pinwen Zhu(朱品文). Chin. Phys. B, 2025, 34(8): 086104.
[4] Superconductivity in YbN4H12 under low pressures
Xiang Wang(汪翔), Chenlong Xie(谢晨龙), Haohao Hong(洪浩豪), Yanliang Wei(魏衍亮), Zhao Liu(刘召), and Tian Cui(崔田). Chin. Phys. B, 2025, 34(8): 087401.
[5] High-pressure studies on quasi-one-dimensional systems
Wenhui Liu(刘雯慧), Jiajia Feng(冯嘉嘉), Wei Zhou(周苇), Sheng Li(李升), and Zhixiang Shi(施智祥). Chin. Phys. B, 2025, 34(8): 088104.
[6] A novel metastable structure and superconductivity of hydrogen-rich compound CdH6 under pressure
Yan Yan(闫岩), Chengao Jiang(蒋成澳), Wen Gao(高稳), Rui Chen(陈蕊), Xiaodong Yang(杨晓东), Runru Liu(刘润茹), Lihua Yang(杨丽华), and Lili Wang(王丽丽). Chin. Phys. B, 2025, 34(8): 086201.
[7] Competing phases and suppression of superconductivity in hole-doped Hubbard model on honeycomb lattice
Hao Zhang(张浩), Shaojun Dong(董少钧), and Lixin He(何力新). Chin. Phys. B, 2025, 34(7): 077102.
[8] Momentum-dependent anisotropy of the charge density wave gap in quasi-1D ZrTe3-xSex (x = 0.015)
Renjie Zhang(张任杰), Yudong Hu(胡裕栋), Yiwei Cheng(程以伟), Yigui Zhong(钟益桂), Xuezhi Chen(陈学智), Junqin Li(李俊琴), Kozo Okazaki, Yaobo Huang(黄耀波), Tian Shang(商恬), Shifeng Jin(金士锋), Baiqing Lv(吕佰晴), and Hong Ding(丁洪). Chin. Phys. B, 2025, 34(7): 077106.
[9] Strongly tunable Ising superconductivity in van der Waals NbSe2-xTex nanosheets
Jingyuan Qu(曲静远), Guojing Hu(胡国静), Cuili Xiang(向翠丽), Hui Guo(郭辉), Senhao Lv(吕森浩), Yechao Han(韩烨超), Guoyu Xian(冼国裕), Qi Qi(齐琦), Zhen Zhao(赵振), Ke Zhu(祝轲), Xiao Lin(林晓), Lihong Bao(鲍丽宏), Yongjin Zou(邹勇进), Lixian Sun(孙立贤), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2025, 34(6): 067401.
[10] Pressure-induced superconductivity in Bi-doped BaFe2(As1-xBix)2 single crystals
Chang Su(苏畅), Wuhao Chen(陈吴昊), Wenjing Cheng(程文静), Jiabin Si(司佳斌), Qunfei Zheng(郑群飞), Jinlong Zhu(朱金龙), Lingyi Xing(邢令义), and Ying Liu(刘影). Chin. Phys. B, 2025, 34(6): 067403.
[11] Anisotropic two-band α-model and its application to layered chalcogenide superconductor NbSe2
Jiang-Ning Zhang(张江宁), Guo Wang(王果), Tian-Yi Han(韩天意), and Hai Huang(黄海). Chin. Phys. B, 2025, 34(5): 057401.
[12] Well defined phase boundaries and superconductivity with high Tc in PbSe single crystal
Jiawei Hu(胡佳玮), Yanghao Meng(孟养浩), He Zhang(张赫), Wei Zhong(钟韦), Hang Zhai(翟航), Xiaohui Yu(于晓辉), Binbin Yue(岳彬彬), and Fang Hong(洪芳). Chin. Phys. B, 2025, 34(4): 046102.
[13] Strain-modulated superconductivity of monolayer Tc2B2
Zhengtao Liu(刘正涛), Zihan Zhang(张子涵), Hao Song(宋昊), Tian Cui(崔田), and Defang Duan(段德芳). Chin. Phys. B, 2025, 34(4): 047104.
[14] Superconductivity in titanium probed by AC magnetic susceptibility to 120 GPa
Jing Song(宋静), Hongyu Liu(刘红玉), Xiancheng Wang(望贤成), and Changqing Jin(靳常青). Chin. Phys. B, 2025, 34(4): 047403.
[15] Regulation of superconductivity in Nb thin films induced by interstitial oxygen atoms
Yuchuan Liu(刘钰川), Ming Yang(杨明), Yun Fan(范云), Zulei Xu(徐祖磊), Yu Wu(吴禹), Yixin Liu(刘以鑫), Wei Peng(彭炜), Gang Mu(牟刚), and Zhi-Rong Lin(林志荣). Chin. Phys. B, 2025, 34(4): 047401.
No Suggested Reading articles found!