Please wait a minute...
Chin. Phys. B, 2025, Vol. 34(8): 080508    DOI: 10.1088/1674-1056/adecfc
Special Issue:
SPECIAL TOPIC — A celebration of the 90th Anniversary of the Birth of Bolin Hao Prev   Next  

Exploring clogging of interacting particles with hydrodynamic memory in a corrugated channel: A promising sensor of non-Brownian diffusion

Yuhui Luo(罗玉辉)1, Chunhua Zeng(曾春华)2,†, and Tao Huang(黄韬)2
1 School of Physics and Information Engineering, Zhaotong University, Zhaotong 657000, China;
2 Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
Abstract  Particle transport is a fundamental aspect of various systems, from artificial to biological. A common assumption is that particle motion follows Markovian (memoryless) processes in the absence of interaction between particles. However, hydrodynamic memory and the interaction between particles are ubiquitous, leaving many fundamental questions unanswered regarding transport of interacting particles involving hydrodynamic drag in corrugated channels, as described by the fractional Langevin equation. This study examines the hydrodynamic transport of interacting non-Brownian particles moving within a corrugated channel. We propose a method that relies on factors such as temperature, the driving force to alternate between no transport and finite net transport. Of importance is to note that the absence of transport results from the clogging, while the transport consists of collective motion and independent motion. The transport systems investigated in this work suggest the potential for sensor functionality within the system. Our findings may prove valuable for exploring the transport with hydrodynamic memory in various fields, including biology, physics, and chemistry.
Keywords:  particle transport      clogging      non-Brownian diffusion      hydrodynamic memory      sensor  
Received:  09 May 2025      Revised:  25 June 2025      Accepted manuscript online:  08 July 2025
PACS:  05.20.Dd (Kinetic theory)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  05.30.Pr (Fractional statistics systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12365007 and 12265017), Yunnan Fundamental Research Projects (Grant Nos. 202101AS070018 and 202101AV070015), the Scientific Research Foundation of the Yunnan Provincial Department of Education (Grant No. 2023J1208),Xingdian Talents Support Program, and Yunnan Province Ten Thousand Talents Plan Young & Elite Talents Project, and Yunnan Province Computational Physics and Applied Science and Technology Innovation Team.
Corresponding Authors:  Chunhua Zeng     E-mail:  zchh2009@126.com

Cite this article: 

Yuhui Luo(罗玉辉), Chunhua Zeng(曾春华), and Tao Huang(黄韬) Exploring clogging of interacting particles with hydrodynamic memory in a corrugated channel: A promising sensor of non-Brownian diffusion 2025 Chin. Phys. B 34 080508

[1] Reguera D, Schmid G, Burada P S, Rubí J M, Reimann P and Hänggi P 2006 Phys. Rev. Lett. 96 130603
[2] Wang Y T, Sun X L, Luo L Y, Zhang Z M, Li H P, Jiang D J and Zhou M S 2023 Chin. Phys. B 32 095201
[3] Gao Z Y, Dong W, Tian C B, Jiang X Z, Dai Z L and Song Y H 2024 Chin. Phys. B 33 095203
[4] Jing P, Haque F, Shu D, Montemagno C and Guo P 2010 Nano Lett. 10 3620
[5] Braun A, Varga-Szabo D, Kleinschnitz C, Pleines I, Bender M, Austinat M, Bosl M, Stoll G and Nieswandt B 2009 Blood 113 2056
[6] Reguera D, Luque A, Burada P S, Schmid G, Rubí J M and Hänggi P 2012 Phys. Rev. Lett. 108 020604
[7] Ghosh P K, Hänggi P, Marchesoni F, Nori F and Schmid G 2012 Europhys. Lett. 98 50002
[8] Malgaretti P, Pagonabarraga I and Rubi J M 2014 Phys. Rev. Lett. 113 128301
[9] Li Y, Ghosh P K, Marchesoni F and Li B 2014 Phys. Rev. E 90 062301
[10] Ao X, Ghosh P K, Li Y, Schmid G, Hänggi P and Marchesoni F 2014 Eur. Phys. J. Spec. Top. 223 3227
[11] Bayley H and Cremer P S 2001 Nature 413 226
[12] Yang X, Liu C, Li Y, Marchesoni F, Hänggi P and Zhang H P 2017 Proc. Natl. Acad. Sci. USA 114 9564
[13] Hoyles M, Kuyucak S and Chung S H 1998 Phys. Rev. E 58 3654
[14] Di Carlo D 2009 Lab Chip 9 3038
[15] Guerin T, Levernier N, Benichou O and Voituriez R 2016 Nature 534 356
[16] Haque F, Geng J, Montemagno C and Guo P 2013 Nat. Protoc. 8 373
[17] Herisson F, Frodermann V, Courties G, Rohde D, Sun Y, Vandoorne K, Wojtkiewicz G R, Masson G S, Vinegoni C, Kim J, et al. 2018 Nat. Neurosci. 21 1209
[18] Pardo-Pastor C, Rubio-Moscardo F, Vogel-Gonzalez M, Serra S A, Afthinos A, Mrkonjic S, Destaing O, Abenza J F, Fernandez-Fernandez J M, Trepat X, et al. 2018 Proc. Natl. Acad. Sci. USA 115 1925
[19] Bi G, Su M, Li N, Liang Y, Dang S, Xu J, Hu M,Wang J, Zou M, Deng Y, et al. 2021 Cell 184 3528
[20] Kefauver J M, Ward A B and Patapoutian A 2020 Nature 587 567
[21] Benichou O and Voituriez R 2008 Phys. Rev. Lett. 100 168105
[22] Souzy M, Allard A, Louf J F m c, Contino M, Tuval I and Polin M 2022 Phys. Rev. Res. 4 L022029
[23] Robins T, Camacho J, Agudo O C, Herraiz J L and Guasch L 2021 Sensors 21 4570
[24] Goychuk I and Kharchenko V 2012 Phys. Rev. E 85 051131
[25] Kharchenko V O and Goychuk I 2013 Phys. Rev. E 87 052119
[26] Goychuk I and Poschel T 2020 Phys. Rev. E 102 012139
[27] Goychuk I 2019 Biosystems 177 56
[28] Goychuk I 2015 Phys. Rev. E 92 042711
[29] Mei R, Xu Y and Kurths J 2019 Phys. Rev. E 100 022114
[30] Burov S and Barkai E 2008 Phys. Rev. Lett. 100 070601
[31] Siegle P, Goychuk I and Hänggi P 2010 Phys. Rev. Lett. 105 100602
[32] Franosch T, Grimm M, Belushkin M, Mor F M, Foffi G, Forró L and Jeney S 2011 Nature 478 85
[33] Goychuk I 2019 Phys. Rev. Lett. 123 180603
[34] Henry B I, Langlands T AMandWearne S L 2008 Phys. Rev. Lett. 100 128103
[35] Alkahtani B S T 2016 Chaos Soliton. Fract. 89 547
[36] Chen S B, Jahanshahi H, Abba O A, Solís-Pérez J E, Bekiros S, Gómez- Aguilar J, You
[37] Knapp C, Chew A and Alicea J 2020 Phys. Rev. Lett. 125 207002
[38] Zhang Y, Liu X, BelićMR, ZhongW, Zhang Y and Xiao M 2015 Phys. Rev. Lett. 115 180403
[39] Moreira A A, Vieira C M, Carmona H A, Andrade J S and Tsallis C 2018 Phys. Rev. E 98 032138
[40] Guerreiro T, Martin A, Sanguinetti B, Pelc J S, Langrock C, Fejer M M, Gisin N, Zbinden H, Sangouard N and Thew R T 2014 Phys. Rev. Lett. 113 173601
[41] Tateno M, Yanagishima T, Russo J and Tanaka H 2019 Phys. Rev. Lett. 123 258002
[42] Park S C 2020 Phys. Rev. E 102 042112
[43] Lind T K, Zielińska P, Wacklin H P, Urbańczyk-Lipkowska Z and Cárdenas M 2014 ACS Nano 8 396
[44] Thomas C C and Durian D J 2015 Phys. Rev. Lett. 114 178001
[45] Thomas C C and Durian D J 2016 Phys. Rev. E 94 022901
[46] Chieco A T, Zu M, Liu A J, Xu N and Durian D J 2018 Phys. Rev. E 98 042606
[47] Majmudar T S, Sperl M, Luding S and Behringer R P 2007 Phys. Rev. Lett. 98 058001
[48] Wang W, Cherstvy A G, Kantz H, Metzler R and Sokolov I M 2021 Phys. Rev. E 104 024105
[49] Kursawe J, Schulz J and Metzler R 2013 Phys. Rev. E 88 062124
[50] Siegle P, Goychuk I and Hänggi P 2011 Europhys. Lett. 93 20002
[51] Vojta T, Halladay S, Skinner S, Janusonis S, Guggenberger T and Metzler R 2020 Phys. Rev. E 102 032108
[52] Geiger M, Spigler S, d’Ascoli S, Sagun L, Baity-Jesi M, Biroli G and Wyart M 2019 Phys. Rev. E 100 012115
[53] Mongera A, Rowghanian P, Gustafson H J, Shelton E, Kealhofer D A, Carn E K, Serwane F, Lucio A A, Giammona J and Campàs O 2018 Nature 561 401
[54] Hentschel H G E, Procaccia I and Roy S 2019 Phys. Rev. E 100 042902
[55] Zhu Q, Zhou Y, Marchesoni F and Zhang H P 2022 Phys. Rev. Lett. 129 098001
[1] Corrigendum to “Multi-functional photonic spin Hall effect sensor controlled by phase transition”
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2025, 34(9): 099901.
[2] Temperature and acoustic impedance simultaneous sensor based on forward stimulated Brillouin scattering in highly nonlinear fiber
Shilong Liu(刘仕龙), Yang Li(李阳), Hongbin Hu(胡洪彬), Bing Sun(孙兵), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2025, 34(7): 074212.
[3] Planar structure of organic photodetector for low dark current
Mohammad Nofil, Amirul Ashraf Md Sabri, Fadlan Arif Natashah, Tahani M Bawazeer, Mohammad S Alsoufi, Nur Adilah Roslan, and Azzuliani Supangat. Chin. Phys. B, 2025, 34(2): 024204.
[4] Gate-tunable high-responsivity photodiode based on 2D ambipolar semiconductor
Wentao Yu(于文韬), Long Zhao(赵龙), Yanfei Gao(高延飞), Shiping Gao(高石平), Yuekun Yang(杨悦昆), Chen Pan(潘晨), Shi-Jun Liang(梁世军), and Bin Cheng(程斌). Chin. Phys. B, 2025, 34(1): 018502.
[5] Surface phonon resonance: A new mechanism for enhancing photonic spin Hall effect and refractive index sensor
Jie Cheng(程杰), Chenglong Wang(汪承龙), Yiming Li(李一铭), Yalin Zhang(张亚林), Shengli Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(8): 084201.
[6] Event-based nonfragile state estimation for memristive recurrent neural networks with stochastic cyber-attacks and sensor saturations
Xiao-Guang Shao(邵晓光), Jie Zhang(张捷), and Yan-Juan Lu(鲁延娟). Chin. Phys. B, 2024, 33(7): 070203.
[7] Multi-functional photonic spin Hall effect sensor controlled by phase transition
Jie Cheng(程杰), Rui-Zhao Li(李瑞昭), Cheng Cheng(程骋), Ya-Lin Zhang(张亚林), Sheng-Li Liu(刘胜利), and Peng Dong(董鹏). Chin. Phys. B, 2024, 33(7): 074203.
[8] Mechanism analysis of regulating Turing instability and Hopf bifurcation of malware propagation in mobile wireless sensor networks
Xi-Xi Huang(黄习习), Min Xiao(肖敏), Leszek Rutkowski, Hai-Bo Bao(包海波), Xia Huang(黄霞), and Jin-De Cao(曹进德). Chin. Phys. B, 2024, 33(6): 060202.
[9] Microwave electrometry with Rydberg atoms in a vapor cell using microwave amplitude modulation
Jian-Hai Hao(郝建海), Feng-Dong Jia(贾凤东), Yue Cui(崔越), Yu-Han Wang(王昱寒), Fei Zhou(周飞), Xiu-Bin Liu(刘修彬), Jian Zhang(张剑), Feng Xie(谢锋), Jin-Hai Bai(白金海), Jian-Qi You(尤建琦), Yu Wang(王宇), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2024, 33(5): 050702.
[10] Sensing the heavy water concentration in an H2O—D2O mixture by solid—solid phononic crystals
Mohammadreza Rahimi and Ali Bahrami. Chin. Phys. B, 2024, 33(4): 044301.
[11] Observer-based dynamic event-triggered control for distributed parameter systems over mobile sensor-plus-actuator networks
Wenying Mu(穆文英), Bo Zhuang(庄波), and Fang Qiu(邱芳). Chin. Phys. B, 2024, 33(4): 040204.
[12] Advances in neuromorphic computing: Expanding horizons for AI development through novel artificial neurons and in-sensor computing
Yubo Yang(杨玉波), Jizhe Zhao(赵吉哲), Yinjie Liu(刘胤洁), Xiayang Hua(华夏扬), Tianrui Wang(王天睿), Jiyuan Zheng(郑纪元), Zhibiao Hao(郝智彪), Bing Xiong(熊兵), Changzheng Sun(孙长征), Yanjun Han(韩彦军), Jian Wang(王健), Hongtao Li(李洪涛), Lai Wang(汪莱), and Yi Luo(罗毅). Chin. Phys. B, 2024, 33(3): 030702.
[13] Nonlinear enhanced mass sensor based on optomechanical system
Xin-Xin Man(满鑫鑫), Jing Sun(孙静), Wen-Zhao Zhang(张闻钊), Lijuan Luo(罗丽娟), and Guangri Jin(金光日). Chin. Phys. B, 2024, 33(12): 120303.
[14] Microwave field sensor based on cold cesium Rydberg three-photon electromagnetically induced spectroscopy
Yuan-Yuan Wu(吴圆圆), Yun-Hui He(何云辉), Yue-Chun Jiao(焦月春), and Jian-Ming Zhao(赵建明). Chin. Phys. B, 2024, 33(11): 113201.
[15] Elemental composition x-ray fluorescence analysis with a TES-based high-resolution x-ray spectrometer
Bingjun Wu(吴秉骏), Jingkai Xia(夏经铠), Shuo Zhang(张硕), Qiang Fu(傅强), Hui Zhang(章辉),Xiaoming Xie(谢晓明), and Zhi Liu(刘志). Chin. Phys. B, 2023, 32(9): 097801.
No Suggested Reading articles found!