SPECIAL TOPIC — Quantum computing and quantum sensing |
Prev
Next
|
|
|
Nonlinear enhanced mass sensor based on optomechanical system |
Xin-Xin Man(满鑫鑫)1,2, Jing Sun(孙静)3, Wen-Zhao Zhang(张闻钊)3, Lijuan Luo(罗丽娟)2,†, and Guangri Jin(金光日)1,‡ |
1 Key Laboratory of Optical Field Manipulation of Zhejiang Province and Physics Department of Zhejiang Sci-Tech University, Hangzhou 310018, China; 2 Department of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, China; 3 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China |
|
|
Abstract A high-precision and tunable mass detection scheme based on a double-oscillator optomechanical system is proposed. By designating one of the oscillators as the detection port, tiny mass signals can be probed through the frequency shift of the output spectrum, utilizing the system's optomechanically induced transparency (OMIT) effect. By solving the output of the optical mode, we demonstrate that the system exhibits two OMIT windows due to the double-oscillator coupling, with one window being strongly dependent on the mass to be detected. Characterizing the spectrum around this window enables high magnification and precise detection of the input signal under nonlinear parameter conditions. Additionally, our scheme shows resilience to environmental temperature variations and drive strength perturbations.
|
Received: 14 August 2024
Revised: 03 October 2024
Accepted manuscript online: 09 October 2024
|
PACS:
|
03.67.Bg
|
(Entanglement production and manipulation)
|
|
42.50.-p
|
(Quantum optics)
|
|
42.50.Wk
|
(Mechanical effects of light on material media, microstructures and particles)
|
|
Fund: Project supported by the Science Foundation of Zhejiang Sci-Tech University (Grant No. 18062145-Y), the National Natural Science Foundation of China (Grant Nos. 12075209 and 12074206), the Natural Science Foundation of Zhejiang Province (Grant No. LY22A040005), and the Innovation Program for Quantum Science and Technology (Grant No. 2023ZD0300904). |
Corresponding Authors:
Lijuan Luo, Guangri Jin
E-mail: lijuanluo1224@hotmail.com
|
Cite this article:
Xin-Xin Man(满鑫鑫), Jing Sun(孙静), Wen-Zhao Zhang(张闻钊), Lijuan Luo(罗丽娟), and Guangri Jin(金光日) Nonlinear enhanced mass sensor based on optomechanical system 2024 Chin. Phys. B 33 120303
|
[1] Parikh M, Wilczek F and Zahariade G 2021 Phys. Rev. Lett. 127 081602 [2] Marletto C and Vedral V 2017 Phys. Rev. Lett. 119 240402 [3] Ma Y, Danilishin S L, Zhao C, Miao H, Korth W Z, Chen Y, Ward R L and Blair D G 2014 Phys. Rev. Lett. 113 151102 [4] Crescini N, Alesini D, Braggio C, Carugno G, D’Agostino D, Di Gioacchino D, Falferi P, Gambardella U, Gatti C, Iannone G, Ligi C, Lombardi A, Ortolan A, Pengo R, Ruoso G and Taffarello L QUAX Collaboration 2020 Phys. Rev. Lett. 124 171801 [5] Ye J and Zoller P 2024 Phys. Rev. Lett. 132 190001 [6] Estrada J, Harnik R, Rodrigues D and Senger M 2021 PRX Quantum 2 030340 [7] Lopaeva E D, Ruo Berchera I, Degiovanni I P, Olivares S, Brida G and Genovese M 2013 Phys. Rev. Lett. 110 153603 [8] Lloyd S 2013 Science 321 1463 [9] Barzanjeh S, Guha S, Weedbrook C, Vitali D, Shapiro J H and Pirandola S 2015 Phys. Rev. Lett. 114 080503 [10] Xu X and Taylor J M 2014 Phys. Rev. A 90 043848 [11] Zhang W Z, Chen L B, Cheng J and Jiang Y F 2019 Phys. Rev. A 99 063811 [12] Liu Z, Liu Y Q, Mai Z Y, Yang Y J, Zhou N n and Yu C S 2024 Phys. Rev. A 109 023709 [13] Zhang K, Bariani F, Dong Y, Zhang W and Meystre P 2015 Phys. Rev. Lett. 114 113601 [14] Rong X, Jiao M, Geng J, Zhang B, Xie T, Shi F, Duan C K, Cai Y F and Du J 2018 Phys. Rev. Lett. 121 080402 [15] Rugar D, Budakian R, Mamin H J and Chui B W 2004 Nature 430 329 [16] Lecocq F, Teufel J D, Aumentado J and Simmonds R W 2015 Nat. Phys. 11 635 [17] Li J J and Zhu K D 2012 Appl. Phys. Lett. 101 141905 [18] Lecocq F, Clark J B, Simmonds R W, Aumentado J and Teufel J D 2015 Phys. Rev. X 5 041037 [19] Aspelmeyer M, Kippenberg T J and Marquardt F 2014 Rev. Mod. Phys. 86 1391 [20] Peano V, Schwefel H G L, Marquardt C and Marquardt F 2015 Phys. Rev. Lett. 115 243603 [21] Xia Y, Agrawal A R, Pluchar C M, Brady A J, Liu Z, Zhuang Q, Wilson D J and Zhang Z 2023 Nat. Photon. 17 470 [22] Wang C W, Niu W, Zhang Y, Cheng J and Zhang W Z 2023 Opt. Express 31 11561 [23] Li K, Davuluri S and Li Y 2018 Chin. Phys. B 27 084203 [24] Wu M, Hryciw A C, Healey C, Lake D P, Jayakumar H, Freeman M R, Davis J P and Barclay P E 2014 Phys. Rev. X 4 021052 [25] Shapiro J H 2020 IEEE Aerospace and Electronic Systems Magazine 35 8 [26] Regal C A, Teufel J D and Lehnert K W 2008 Nat. Phys. 4 555 [27] He Y 2015 Appl. Phys. Lett. 106 121905 [28] Liu F, Alaie S, Leseman Z C and Hossein-Zadeh M 2013 Opt. Express 21 19555 [29] Yang Y T, Callegari C, Feng X L, Ekinci K L and Roukes M L 2006 Nano Lett. 6 583 [30] Motazedifard A, Bemani F, Naderi M H, Roknizadeh R and Vitali D 2016 New J. Phys. 18 073040 [31] Allahverdi H, Motazedifard A, Dalafi A, Vitali D and Naderi M H 2022 Phys. Rev. A 106 023107 [32] Singh V, Bosman S J, Schneider B H, Blanter Y M, Castellanos-Gomez A and Steele G A 2014 Nat. Nanotechnol. 9 820 [33] Cole G D, Wilson-Rae I, Werbach K, Vanner M R and Aspelmeyer M 2011 Nat. Commun. 2 231 [34] Imamoglu A and Whaley K B 2015 Phys. Rev. E 91 022714 [35] Baake E, Baake M and Wagner H 1998 Phys. Rev. E 57 1191 [36] York D M, Lee T S and Yang W 1998 Phys. Rev. Lett. 80 5011 [37] Liu J and Zhu K D 2018 Photonics Research 6 867 [38] Agarwal G S and Huang S 2010 Phys. Rev. A 81 041803 [39] Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C and Dong C H 2016 Nat. Photon. 10 657 [40] Jing H, Özdemir c K, Geng Z, Zhang J, Lü X Y, Peng B, Yang L and Nori F 2015 Scientific Reports 5 9663 [41] Agarwal G S and Jha S S 2013 Phys. Rev. A 88 013815 [42] Massel F, Cho S U, Pirkkalainen J M, Hakonen P J, Heikkilä T T and Sillanpää M A 2012 Nat. Commun. 3 987 [43] Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A and Kippenberg T J 2010 Science 330 1520 [44] Karuza M, Biancofiore C, Bawaj M, Molinelli C, Galassi M, Natali R, Tombesi P, Di Giuseppe G and Vitali D 2013 Phys. Rev. A 88 013804 [45] Zhou X, Hocke F, Schliesser A, Marx A, Huebl H, Gross R and Kippenberg T J 2013 Nat. Phys. 9 179 [46] Peng J X, Chen Z, Yuan Q Z and Feng X L 2019 Phys. Rev. A 99 043817 [47] Wang Q, Li W J, Ma P C and He Z 2017 International Journal of Theoretical Physics 56 2212 [48] Wang Q and Li W J 2017 International Journal of Theoretical Physics 56 1346 [49] Patil Y S, Chakram S, Chang L and Vengalattore M 2015 Phys. Rev. Lett. 115 017202 [50] Lassagne B, Garcia-Sanchez D, Aguasca A and Bachtold A 2008 Nano Lett. 8 3735 [51] Li W, Li C and Song H 2017 Phys. Rev. A 95 023827 [52] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press) [53] Mu Q X, Lang C and Zhang W Z 2019 Chin. Phys. B 28 114206 [54] Ekinci K L, Yang Y T and Roukes M L 2004 J. Appl. Phys. 95 2682 [55] Chen Y, Zhang Y L, Shen Z, Zou C L, Guo G C and Dong C H 2021 Phys. Rev. Lett. 126 123603 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|