Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(4): 044301    DOI: 10.1088/1674-1056/ad0bf5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Sensing the heavy water concentration in an H2O—D2O mixture by solid—solid phononic crystals

Mohammadreza Rahimi and Ali Bahrami
Optoelectronic and Nanophotonics Research Laboratory(ONRL), Faculty of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
Abstract  A new method based on phononic crystals is presented to detect the concentration of heavy water (D2O) in an H2O—D2O mixture. Results have been obtained and analyzed in the concentration range of 0%—10% and 90%—100% D2O. A proposed structure of tungsten scatterers in an aluminum host is studied. In order to detect the target material, a cavity region is considered as a sound wave resonator in which the target material with different concentrations of D2O is embedded. By changing the concentration of D2O in the H2O—D2O mixture, the resonance frequency undergoes a frequency shift. Each 1% change in D2O concentration in the H2O—D2O mixture causes a frequency change of about 120 Hz. The finite element method is used as the numerical method to calculate and analyze the natural frequencies and transmission spectra of the proposed sensor. The performance evaluation index shows a high Q factor up to 1475758 and a high sensitivity up to 13075, which are acceptable values for sensing purposes. The other figures of merit related to the detection performance also indicate high-quality performance of the designed sensor.
Keywords:  phononic crystals      sensor      H2O—D2O mixture      cavity  
Received:  22 July 2023      Revised:  10 November 2023      Accepted manuscript online:  13 November 2023
PACS:  43.20.+g (General linear acoustics)  
  43.40.+s (Structural acoustics and vibration)  
  43.58.+z (Acoustical measurements and instrumentation)  
Corresponding Authors:  Ali Bahrami     E-mail:  bahrami@sut.ac.ir

Cite this article: 

Mohammadreza Rahimi and Ali Bahrami Sensing the heavy water concentration in an H2O—D2O mixture by solid—solid phononic crystals 2024 Chin. Phys. B 33 044301

[1] Herrig S, Thol M, Harvey A H and Lemmon E W 2018 J. Phys. Chem. Ref. Data 1 47
[2] Lago S, Albo P G and Cavuoto G 2020 Fluid Ph. Equilibria. 15 112401
[3] Kim J, Seo S and Kim T Y 2023 Anal. Chim. Acta 15 1
[4] Rae H K 1978 Jan. Am. Chem. Soc (Washington DC)
[5] Dunning S G, Nuñez A J, Moore M D, Steiner A, Lynch V M, Sessler J L, Holliday B J and Humphrey S M 2017 Chem 2 579
[6] Mir I A, Rawat K and Bohidar H B 2016 Cryst. Res. Technol. 51 561
[7] Gharibi H and Mehaney A 2021 Physica E 126 114429
[8] Gharibi H and Bahrami A 2020 J. Mol. Liq. 305 112841
[9] Lucklum R, Ke M and Zubtsov M 2012 Sens. Actuators B Chem. 171 271
[10] Lucklum R 2014 Procedia Eng. 2014 Jan 87 40
[11] Villa-Arango S, Betancur D, Torres R and Kyriacou P 2018 Sensors 18 3618
[12] Alrowaili Z A, Fathy H M, Elsayed H A, Aouassa M, Mahmoud M H, El-Nasser K S, Taha T A and Mehaney A 2023 Ultrasonics 130 106928
[13] Miao X B, Dong H W and Wang Y S 2023 Eng. Optim. 55 125
[14] Rahimi M R and Bahrami A 2022 ISAV2022 Amirkabir University of Technology (Tehran Polytechnic), Iran pp. 1——6
[15] Lucklum F and Vellekoop M J 2016 IEEE Sensors pp. 1——3
[16] Gueddida A, Zhang V, Carpentier L, Bonhomme J, Bonello B, Pennec Y and Djafari-Rouhani 2023 Sensors 23 2080
[17] Mukhin N, Kutia M, Aman A, Steinmann U and Lucklum R 2022 Sensors 22 2816
[18] Motaei F and Bahrami A 2022 Sci. Rep. 12 10522
[19] Motaei F and Bahrami 2020 J. Mater. Sci. 55 8983
[20] Mehaney A 2019 Ultrasonics 93 37
[21] Gharibi H, Khaligh A, Bahrami A and Ghavifekr H B 2019 J. Mol. Liq. 296 111878
[22] Khaligh A, Bahrami A and Ghavifekr H B 2021 J. Mol. Liq. 343 116972
[23] Zaremanesh M, Carpentier L, Gharibi H, Bahrami A, Mehaney A, Gueddida A, Lucklum R, Djafari-Rouhani B and Pennec Y 2021 APL Mater. 9
[24] Wu Y, Lai Y and Zhang Z Q 2011 Phys. Rev. Lett. 107 105506
[25] Wilson W D 1961 JASA 1961 314
[26] Schaaffs W 1967 Molecular Acoustics Springer-Verlag (Berlin, Germany)
[27] Bhardwaj V and Singh V K 2016 Sens. Actuator A Phys. 244 30
[28] Mehaney A 2020 MRX 6 125556
[1] Mechanism analysis of regulating Turing instability and Hopf bifurcation of malware propagation in mobile wireless sensor networks
Xi-Xi Huang(黄习习), Min Xiao(肖敏), Leszek Rutkowski, Hai-Bo Bao(包海波), Xia Huang(黄霞), and Jin-De Cao(曹进德). Chin. Phys. B, 2024, 33(6): 060202.
[2] High-frequency microwave cavity design for high-mass dark matter axion searches
Chi Zhang(张驰), Jia Wang(王佳), Chunguang Li(李春光), Shiguang Chen(陈石广), Hang Cheng(程航), Liang Sun(孙亮), and Yun Wu(吴云). Chin. Phys. B, 2024, 33(5): 054211.
[3] A novel dual-channel thermo-optic locking method for the whispering gallery mode microresonator
Wenjie Fan(范文杰), Wenyao Liu(刘文耀), Ziwen Pan(潘梓文), Rong Wang(王蓉), Lai Liu(刘来), Enbo Xing(邢恩博), Yanru Zhou(周彦汝), Jun Tang(唐军), and Jun Liu(刘俊). Chin. Phys. B, 2024, 33(5): 054206.
[4] Microwave electrometry with Rydberg atoms in a vapor cell using microwave amplitude modulation
Jian-Hai Hao(郝建海), Feng-Dong Jia(贾凤东), Yue Cui(崔越), Yu-Han Wang(王昱寒), Fei Zhou(周飞), Xiu-Bin Liu(刘修彬), Jian Zhang(张剑), Feng Xie(谢锋), Jin-Hai Bai(白金海), Jian-Qi You(尤建琦), Yu Wang(王宇), and Zhi-Ping Zhong(钟志萍). Chin. Phys. B, 2024, 33(5): 050702.
[5] Observer-based dynamic event-triggered control for distributed parameter systems over mobile sensor-plus-actuator networks
Wenying Mu(穆文英), Bo Zhuang(庄波), and Fang Qiu(邱芳). Chin. Phys. B, 2024, 33(4): 040204.
[6] Exciton-polaritons in a 2D hybrid organic-inorganic perovskite microcavity with the presence of optical Stark effect
Kenneth Coker, Chuyuan Zheng(郑楚媛), Joseph Roger Arhin, Kwame Opuni-Boachie Obour Agyekum, and Weili Zhang(张伟利). Chin. Phys. B, 2024, 33(3): 037102.
[7] Controllable optical bistability in a Fabry-Pérot cavity with a nonlinear three-dimensional Dirac semimetal
Hong-Xia Yuan(袁红霞), Jia-Xue Li(李佳雪), Qi-Jun Ma(马奇军), Hai-Shan Tian(田海山),Yun-Yang Ye(叶云洋), Wen-Xin Luo(罗文昕), Xing-Hua Wu(吴杏华), and Le-Yong Jiang(蒋乐勇). Chin. Phys. B, 2024, 33(3): 034213.
[8] High-efficiency ultra-fast all-optical photonic crystal diode based on the lateral-coupled nonlinear elliptical defect
Daxing Li(李大星), Kaizhu Liu(刘凯柱), Chunlong Yu(余春龙), Kuo Zhang(张括),Yueqin Liu(刘跃钦), and Shuai Feng(冯帅). Chin. Phys. B, 2024, 33(3): 034215.
[9] Advances in neuromorphic computing: Expanding horizons for AI development through novel artificial neurons and in-sensor computing
Yubo Yang(杨玉波), Jizhe Zhao(赵吉哲), Yinjie Liu(刘胤洁), Xiayang Hua(华夏扬), Tianrui Wang(王天睿), Jiyuan Zheng(郑纪元), Zhibiao Hao(郝智彪), Bing Xiong(熊兵), Changzheng Sun(孙长征), Yanjun Han(韩彦军), Jian Wang(王健), Hongtao Li(李洪涛), Lai Wang(汪莱), and Yi Luo(罗毅). Chin. Phys. B, 2024, 33(3): 030702.
[10] A Yb optical clock with a lattice power enhancement cavity
Chunyun Wang(王春云), Yuan Yao(姚远), Haosen Shi(师浩森), Hongfu Yu(于洪浮),Longsheng Ma(马龙生), and Yanyi Jiang(蒋燕义). Chin. Phys. B, 2024, 33(3): 030601.
[11] Effective transmittance of Fabry—Perot cavity under non-parallel beam incidence
Yin-Sheng Lv(吕寅生), Pin-Hua Xie(谢品华), Jin Xu(徐晋), You-Tao Li(李友涛), and Hua-Rong Zhang(张华荣). Chin. Phys. B, 2024, 33(1): 014210.
[12] Finesse measurement for high-power optical enhancement cavity
Xin-Yi Lu(陆心怡), Xing Liu(柳兴), Qi-Li Tian(田其立), Huan Wang(王焕), Jia-Jun Wang(汪嘉俊), and Li-Xin Yan(颜立新). Chin. Phys. B, 2024, 33(1): 014205.
[13] Elemental composition x-ray fluorescence analysis with a TES-based high-resolution x-ray spectrometer
Bingjun Wu(吴秉骏), Jingkai Xia(夏经铠), Shuo Zhang(张硕), Qiang Fu(傅强), Hui Zhang(章辉),Xiaoming Xie(谢晓明), and Zhi Liu(刘志). Chin. Phys. B, 2023, 32(9): 097801.
[14] High-fidelity topological quantum state transfersin a cavity-magnon system
Xi-Xi Bao(包茜茜), Gang-Feng Guo(郭刚峰), Xu Yang(杨煦), and Lei Tan(谭磊). Chin. Phys. B, 2023, 32(8): 080301.
[15] A novel power-combination method using a time-reversal pulse-compression technique
Xi-Cheng Lu(陆希成), Jin Tian(田锦), Rong-Wei Zhang(张荣威), Hai-Bo Wang(汪海波), and Yang Qiu(邱扬). Chin. Phys. B, 2023, 32(8): 084101.
No Suggested Reading articles found!